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Preface

You are holding the volume of extended abstracts
of the symposium-, on Applied Mathematical
Programming and Modeling (APMOD93) in your hand.
The institutional organizer of the event is the
Computer and Automation Institute of the
Hungarian Academy of Sciences, venue: Budapest,
Hungary, date: January 6-8, 1993.

The purpose of APMOD93, as a successor of
APMOD91, held at Brunel University, London, UK,
1991, was to provide a continuing forum for new
achievements in computational mathematical
programming and modeling and their applications
in solving large and difficult real-life
problems.

The organization of APMOD93 was supported by many
enthusiastic individuals and bodies. The bulk of
the work in preparing the scientific program was
done by the members of the International Program
Committee.

This volume contains the extended abstracts of
the papers accepted for presentation and received
by December 1, 1992. The papers appear by the
first authors, in alphabetic order.

It is our belief that the present volume will
contribute to the rapid exchange of scientific
information in the field of applied mathematical
programming and modeling.

Budapest, December 1, 1992

IstvAn Maros
Chairman

International Program Comnmittee
APMOD93
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Implementing a Maximum Flow Algorithm:
Experiments�with Dynamic Trees

(Extended Abstract)

T. Badics and E. Boros "

November 19, 1992

1 Introduction

In this paper we report on an implementation of a maximum flow algorithm by
Cheriyan and Hagerup [1]. Our aim was to test the behavior of this algorithm
in practice, concerning it's good theoretical worst case bound. We were particu-
larly interested in the effect of using theoretically well behaving data structures
such as dynamic trees [11], and Fibonacci heaps [13]. We also made comparisons
to two preflow-push based algorithm by Goldberg and Tarjan [10], and to an
implementation of pushes along several edges without using dynamic trees.

2 Basic notions and the PLED algorithm

We assume that the reader is familiar with the generic maximum flow algorithm
in [10] and refer to [10] for definitions of the terms network, source s. sink t, edge
capacity c(v, w), flow, maximum flow, preflow f, flow excess e(v) of a vertex v,
residual graph, residual capacity rescap(v, w) of the edge (v, w), valid labeling d,
active vertex, push, saturating push, and nonsaturating push. Let G = (V, E)
denote the digraph (assumed symmetric) corresponding to the network. Let
N = IV[, M = IEI.

Our implementation is based on thl algorithm developed by Cheriyan and
Hagerup (see [1]). Following [1] we shall refer to this algorithm as PLED (short-
hand for Prudent Linking and Excess Diminishing). This algorithm is an in-
stance (with one minor exception) of the generic preflow algorithm by Goldberg
and Tarjan [101. PLED also uses an idea introduced by Ahuja and Orlin [4]

*The second author is supported in part by the Office of Naval Research (Grants N00014-
92-J1375 and N00014-92-J4083).
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of scaling the volume of the pushes. The scaling factor plays here, however, a
slightly different role: the limits imposed on the volume of a push are not the
same as in [4]. A third idea in PLED is randomization: after each relabeling of
a vertex v, the edgelist of v is permuted randomly. This random permutation
ensures a better theoretical running time. Noga Alon showed in [3] that this
randomization can be replaced by a deterministic procedure. The worst case
running time of PLED, using the randomized procedure is O(NM+N 2(logN) 2)
with high probability (see [2]). Using Alon's derandomization, the deterministic
worst case bound improves to O(NM + N8 /1(IogN)). The worst case bound
without randomization is O(NMIog(N)).

Three main data structures are essential for PLED.

"Ordinary heap that contains vertices which have big excesses and which
are ordered by their distance labels. This structure supports the easy
selection of a vertex for a push. (Select a vertex with the minimal distance
label among the vertices having large enough excesses).

" Fibonacci heap(see (13]) contains the rest of vertices, ordered by their
(small) excesses. This supports constant (amortized) time decrease key
operation and fast update of the scaling factor.

" Dynamic trees structure (see [11]) to maintain a spanning forest F
of G containing a subset of the current edges, where the value associated
with an edge in F is its residual capacity. This structure is able to send
flow value along a path of length L in (amortized) time O(logL)

3 Implementation

Since the algorithm requires the above data structures to achieve the theoreti-
cally best performance, we decided to implement all of them.

Beside the above data structures, we implemented a routine for randomly
permuting the edge lists of the vertices. Although the deterministic permuta-
tion of Alon derandomizes the algorithm, the overhead of such a permutation
generating procedure is so large that we did not expect much improvement
by implementing such a deterministic procedure. Moreover since our instances
were mostly randomly generated, after some preliminary experiments we used
the PLED algorithm without random permutations.

For comparison reasons we coded Goldberg's simple preflow-push algorithm
using simple FIFO queue for selecting the active vertices, and the dynamic trees
version of this algorithm described in the same paper ([10]). Later we refer to
these codes as GOLD and GOLDYN respectively. In the code GOLDYN we
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did not control the size of the dynamic trees. Thus we got a code which has
theoretical worst case bound O(NMIogN) instead of O(NMlog(N 2/M). The
reason for this choice was mostly lack of time and the expected overhead of such
a control mechanism. Besides, in the range of examples we tested the codes,
the benefit from such size control, even without the overhead, probably is not
significant.

For testing the performance of the dynamic trees data structure, we im-
plemented its operations (find-min, add-value, find-root, link, cut, etc.) with
storing the trees explicitly and executing these operations in the obvious (linear
time) way. Hence we avoided the overhead of handling Splay trees and compli-
cated updates. Later in this paper the codes using these "non-dynamic tree"
operations are called NPLED and NGOLDYN. Note that the number of ele-
mentary operations for PLED and NPLED (or GOLDYN and NGOLDYN) are
the same on the same instance, only the way of handling the tree operations are
different. Therefore the difference in running time shows exactly the impact of
the dynamic trees structure.

In our implementations of all the codes we employed an idea, mentioned in
([10]), the so called "global-" or "big-relabeling". Our early experiments showed
clearly, that in PLED just like in GOLD or GOLDYN, the running times of the
variant which uses global-relabeling were much smaller (orders of magnitude)
than the one which does not use it. Therefore we built in some heuristic param-
eters controlling the calling frequency of big-relabeling and affecting thus the
running time.

A "big-relabeling" step consist of two breadth-first-searches, one starting
from the sink and working on the sink side of the residual graph, and another
one for the source side, starting from the source. In these breadth-first-searches
the shortest distance is calculated from each vertex to the sink on the sink side,
or to the source on the source side, respectively. Unfortunately breadth-first-
search is a relatively expensive operation (it takes O(M) steps), so the calling
frequency of big-relabel is very important and can be a subject of later studies.

We implemented another mechanism to achieve better running times in all
three codes. Namely at initialization the algorithm calculates an upper bound
U on the maximum flow value by taking the minimum of capacities of some
cuts. Then it creates a new source by adding an artificial vertex S and a new
arc (S, s) with capacity U to the network, where s was the old source. The
new problem is obviously equivalent with the old one, and the extra cost of its
implementation is negligible. The advantage of doing this is that we do not let
the algorithm push too much excess into the network, reducing in this way the
runtime of the second phase. We have found instances showing that without
this procedure the running time was significantly bigger due to the long second
phase.
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4 Experimental results

For the experiments, we used the DIMACS suggested problems, and the gen-
erators GENRMF, WASHINGTON, and AC-MAX [6,5,7]. (See the DIMACS
document "The Core Experiments"). The families of networks we report on
include the ones suggested by "The Benchmark Experiments", and two classes
of problems made intentionally very difficult for Goldberg's preflow-push algo-
rithm.

All the experiments were carried out on a Sun Sparc 1+ Workstation under
UNIX operations system.

5 Conclusions

Summarizing our work, we can conclude that although the PLED algorithm
has a very good theoretical worst case bound, in practice Goldberg's simple
preflow-push algorithm outperforms it on most of the examples of this study.

Our study shows that the structure of the networks is the most important
factor in ranking the algorithms. One such parameter to be considered, reflect-
ing the structure of the network, could be the relative distance between the
source and the sink.

In this study we were particularly interested in the effectiveness of dynamic
trees. Our experiments show clearly that there are families of problems for
which dynamic trees improved the performance of our code at a small cost. To
determine the properties of network classes on which the algorithms GOLDYN
or PLED are the best would be an interesting topic of later works.

Let us remark finally that Fibonacci heaps did not help much in these exam-
ples. They did not improve neither the running time nor the number of selection
steps of PLED.
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On decomposition of dual variables in linear
programming and its economic interpretation

Erik B. Bajalinov

Department of Mathematics, University of L.Kossuth,
4010 Debrecen, Pf.12, Hungary

Consider the following linear programming (LP) and linear fractional programming
(LFP) problems

max P(x), (1)

max D(x), (2)xE$

max Q(), (3)

where Q(x) = P(x)/D(x), P(x) = E7=1 pixi + po, D(x) = En=, djxj + do > 0
for all xES={xER':Ax<b, z>_0}, Aismxnmatrix, i.e. A=IJaijIlmxn,
X = (x1 ,x 2,'",X ,)T, b = (b1, b2,.-, b.,)T; ai, bi, pi, d, are scalar constants and
T denotes the transpose of a vector. Assume that the feasible set S is non-empty
and P(x), D(z) and Q(z) are not constant on S.

Let the basis feasible solution which maximizes the objective function D(x) be vec-
tor x" = (Xz,x•,.-*.,* ,0,0,... ,0)T. Our aim now is to show that for any op-
timal solution of problem (2) we can find such vector p = (po,pl, ',pn) that
x* is optimal solution of LP problem (1) and LFP problem (3). Further, let
B = (A1, A2, ... , Am) be the optimal basis associated with the positive variables,
where Aj = (ali, a2 ,"', a, )T is j-th column vector of matrix A. Because the basis
vectors are linearly independent we have

A, = ZAxiZ, 1 , j=1'2,''''n'
i=1

and we use these coefficients x~i to define the following

E', 1 pixz - p3

SJ j=1'2'''''-" (4)
A,(x*) = D(x')A',-Px)A
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Further, the values Aj(x*) can also be put in the form
rri

Aj ('x) pi • R,,j -j pD(x') - poA'j, j = 1,2,...,n,,

where i = D(x*)x - A"Xi , 1,2,-.-,m, j=1,2, .. ,n.

Because the vector x" is an optimal solution of (2) we have, [1].

= =0. J = 1, 2,. .. ,Im,

>0. j=m+l,m+2,...,.z, 
(5)

As in [1] and [21 the basis of LP problem (1) and LFP problem (3) is optimal in
original form if A' > 0 for all j and Aj(x*) > 0 for all j respectively but we require
only to consider j = in + 1, in + 2,---, n because

A' =A,(x*)=0 j=1,2,...,m.

The corectness of the following assertion is obvious.

Theorem 1 If vector p = (pi, p-,"', p.) satisfies the conditions

_ j- >0,. j=m + 1,m + 2...,, (6)

, p-P., - pD(x*) - poA 0 > 0, J
then x* is an optimal solution of LP problem (1) and LFP problem (3).

We denote the set of vectors p which satisfy the inequalities (6) by H. It is obvious
that H 5 @. Indeed, if p = Ad where A > 0 and d = (do, dj, -.- d,), then using (4)

and (5) we get

A = AAý' > 0

A (x*) = D(x*)(A') - (AD(x*))A' = O j = m + 1, m + 2..., n.

It means that set H contains at least the ray Ad where A > 0 .
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Let us now consider the dual problems corresponding to primal problems (1), (2)
and (3) respectively, [11 and [3],

Minimize ip(u) - bju, + po

subject to F!= aiiui > pj, j = 1,2,... ,n (7)

ui > 0, i = 112,-..,m

Minimize O(v) E', bivi + do 1
subject to a= avi > d,, j = 1,2,--.,n (8)

vi Ž 0, i = 1,2,...,m

Minimize 4i(Y) = yo

subject to doyo - i by po, (9)

diyo + .aj pi, j =1, 2,.-., n

yi Ž 0, i

The next theorem indicates an important relationship between the optimal solutions
of these problems.

Theorem 2 If LP problems (1), (2) and LFP problem (3) have at least one common
non-degenerate optimal solution x*, then the following decomposition takes place

U! = y, + Q(x*)v,, i = 1,2,...,m, (10)

where u" = (u,u, u,...,u,), v* = (v,,v2,...,v•), y" = (y•,y;,. .. ,y;,) are optimal
solutions of dual problems (7), (8) and (9) respectively.

Proof Suppose that vector x* is a common non-degenerate optimal solution of (1),
(2) and (3). Let us replace the k-th element bk of vector b by bk + c. Here and
in what follows this replacement is claimed to effect no change in the basis of the
optimal solution. In accordance with LP theory [1], for the new optimal solution

'= (x 1 ,z;,.",z,0,0,-..,0) wehave

P(X') = P(X') + eCU, (11)

D(x') = D(z°) + cvk*. (12)
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Analogously, in accordance with [4] for LFP problem (3) we get

Q(W') = Q(x') + D± )

This equation can be written as

P(x') = Q(x')D(x') + ey;.

A comparison of the latter with (11) makes us infer that

P(x') + eu: = Q(x*)D(x') + ey;.

Making use of equation (12) in the latter we find

eu; = ey; + Q(X')ev.

It means that the decomposition (10) is correct.

Let us now focus on the economic interpretation of the results described above.
Let a certain company manufacture n differend kinds of a certain scarce product.
Further, let pi be the profit gained by the company from a unit of the j-th kind of the
product, po be some constant profit gained whose magnitude is independent of the
output volume, bi be the volume of some resource i available to the company and aii
be the expenditure quota of the i-th resource for manufacturing a unit of j-th kind of
the product. Denote the unknown output volume of some j-th kind of the product
by xi. If D(x) is a total output of the product, then problem (2) corresponds to
the economic interests of the consumers. If the company's aim is maximization of
its profit P(x) and/or production efficiency Q(x) calculated as a profit gained from
a unit of output, then problems (1) and (3) correspond to the company's economic
interests. Suppose that vector x" maximizes an output function D(x) on the feasible
set S, i.e. x* is the best output plan from the customers' point of view. If the profit
vector p satisfies the conditions (6), then vector x" maximizes the company's profit
P(x) as well as production efficiency Q(x). It means that to maximize its profit
and/or production efficiency the company ought to organize its manufacturing in
accordance with an output plan x" which conforms to the economic interests of the
consumers in the best way. In this case we will say that the economic interests of
the company conform to the economic interests of the consumers.

Further, let the economic interests of the company conform to those of the consumers
and x* be the optimal solution of (1), (2) and (3). In accordance with Theorem 2 in
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this case decomposition (10) takes place. It is obvious that (10) may be interpreted
in the following way: if the volume of resource i increases by one unit, the profit of
the company rises by u* units. Furthermore, y! units of them are created by more
intensive production, whereas Q(x*)v* units by more extensive production, where
v* is the output increase.

This decomposition may prove to be useful if scarce resources are distributed among
producers in a centralized way. Indeed, let us suppose that the company has made a
request to be allocated certain extra units of the i-th resource. From the customers
point of view it would be reasonable to satisfy the request if and only if t,' > 0
because it is the very case when the use of an additional volume of the i-th resource
brings about an extra output of the scarce product.

Another way of using (10) is to use Q(x*)v! as extra charge for an extra unit of the
i-th resource. Indeed, in this case if the use of an extra unit of the i-th resource
does not lead to an increase in efficiency and y, = 0 then the extra profit of the
company is equal to zero, too. It means that these extra charges will create an
interest in increasing the use primarily of a resource, whose index io is defined from
the equation

io = ind max Y7
I <i<m

since in this case the extra profit is the largest. So if these extra charges have been
introduced into practice they will be favourable for the intensification of production.
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GULF is a simple to use but powerful, menu driven linear-fractional programming
(LFP) and linear programming (LP) package for IBM compatible MS-DOS micro-
computers with minimum of 256K RAM and one floppy disk drive.

The LFP problem solvable by the program may be written as follows

P(X))= '(=) pixi + P0 max(min), (1)

-D--) - 0o~ dx, + do

subject to
200

Zaux < (Ž)(=)b,, i = 1,2,...,150, (2)
j=1

xj>O, J=1,2,...,200, (3)

where denominator D(x) 5 0 for all x E S. S is feasible set defined by the constraints
(2) and (3).

GULF is centered around a spreadsheed styled editor which is used to enter or edit
an existing problem. It operates similarly to an electronic spreadsheet program,
such as Lotus 1-2-3, Quatro Pro or Excel. The commands are available through
the slash (/) key. The user may use several commands, among which the Calculate
command is to calculate the optimal solution. After calculating, GULF prints the
optimal solution, retrieves the data file and returns to the editor.

The program is called by typing GULF [Return]. A spreadsheet represantation
immediately appears, in the following format
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Gulf Limit Col 1 Col 2 Col 3 Col 4 Co15 Col 6
Obj.Numer N
Obj.Denom N 1.00
Row I L
Row 2 L
Row 3 L
Row 4 L
Row 5 L
Row 6 L
Row 7 L
Row 8 L
Row 9 L
Row 10 L
Row 11 L
Row 12 L
Row 13 L
Row 14 L
Row 15 L
Row 16 L
Row 17 L
Row 18 L
Row 19 L
GULF v2.2 Row=-1 Col=0 Aim=MAX File=C:\DEFAULT.GLF

Type < / > for commands

The upper-left position is reserved for the problem name, which you may modify
at will, as well as any of the spreadsheet position. The number 1.00 in the "Limit"
column of the "Obj.Denom" row and 0.00 in the other columns of the row (zeros
are blanked) are the default values of the objective function denominator's constant
term and coefficients respectively. If you retain these default values, GULF solves a
standart LP problem using the objective function coefficients in the "Obj.Numer"
row. To solve a LFP problem, the "Limit" value of the "Obj.Denom" row must
be changed to a value other than 1.00 and/or other coefficients of the row must be
changed to values other than zero.

A spreadsheet styled data editor includes a full range of editing functions, is menu
driven, has a help facility and gives informative error messages. There is a first level
with the Calculate (solves LFP or LP problem) command, the Help (it leads the
user to 4 help screens), the Alter command for modifying the default parameters,
the File command for file operations, the Print command, the Quit command, and
a [Tab] command (which can also be reached directly from the editor) which leads
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to matrix operations (Delete row or column, Insert, Copy, etc.).

To solve a LP or LFP problem GULF uses well known simplex algorithm (1], [2]. The
user has the choice between two solution methods : the simple steepest ascent and
the highest step [3] pivot selection. The second method involves longer iterations.
but may result in less steps. The pI-ckage includes an ideal feature for those who are
learning about simplex method : the facility to drop back into the editor to view
the matrix after each iteration.

The optimal solution and/or problem matrix can be printed on the screen, on a
printer or into a text file on disk. Output includes levels, slacks, shadow costs and
prices and range analysis, each of which can optionally be suppressed. After printing
output, GULF returns to the editor and you can continue making any changes to
the matrix.

Standart MPS data format is used, so data can be exchanged with other LP packages
on mainframe or micro. It is possible to write your own data entry program which
interfaces directly with GULF's solving algorithm, bypassing the data editor.

With a 256K RAM memory, the maximum size is 120 nonnegative variables ar'd
80 constraints. This maximum size increases to 200 nonnegative variables and 150
constraints if you have 384K or more RAM. There is no minimum disk size required
as GULF takes up only about 100K of disk space. GULF is not copy protected.
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We describe the results of a two-year research and development project in the area of
graph-based modeling. The project was funded by a consortium of six industrial sponsors and
was carried out by Chesapeake Decision Sciences, a small U.S. company that specializes in the
development of state-of-the-art software in the area of planning and scheduling.

The graph-based modeling developments served as an extension of the existing MIMI (Manager
for Interactive Modeling Interfaces) system which provides operations research, expert system,
interactive graphics, and database capabilities for the solution of complex industrial planning
and scheduling problems. Thus, the graph-based modeling features (MIMI/G) are intended to
provide support for all aspects of the MIMI system including mathematical programming model
management and solution analysis. As opposed to programming specialized windowed inter-
faces, we set out to provide a generic graph-based modeling language to enable end users to
create new interfaces in a few seconds.

Graph-based modeling in MIMI/G uses a node/edge paradigm in which graph attributes are
associated directly with structures and data in the MIMI database. The MIMI database consists
of sets (ordered lists) and tables (defined on sets) and supports both hierarchical and relational
data models. Graph nodes are generally associated with objects or entries in MIMI sets. Graph
edges are usually associated with relations or entries in MIMI tables. Graph attributes (e.g.,
node position, node size, node color, edge width, edge color, etc.) are associated with values in
MIMI tables.

Ypos

XposYiz

node 1Isz

Xsize BEL

edge width

color E ,

A BELI
Graph Attributes
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Relations defined on special MIMI sets (called graph sets) are used to specify the mapping of
database elements into graph attributes. The GRAPH command, operating on graph sets,
generates the graph in the X Window environment. Once generated, graphs represent a
one-to-one relationship with the underlying data; a change to the graph changes the data and
vice versa. Adding or deleting nodes in a graph add or delete the set entries in the MIMI
database. Adding or deleting edges add or delete entries in MIMI tables. Thus, the graphs
themselves become a natural user interface.

Each node and edge in a graph has a domain defined by the sets and set entries associated with
the node or edge. If the nodes in a graph were generated as the entries in a particular set, then
the domain of each node can be as simple as a tuplet listing the defining set and the entry
associated with each node. However, the nodes in many graphs are defined on complex domains
represented by several tuplets of defining sets and set entries.

In general, graphs are generated for a large variety of domains but displayed selectively only for
a few domains. The manipulation of the domains that define which portions of the graph to
display and which to hide is called graph navigation. Since the graphs in industrial applications
are generally quite large (with hundreds or even thousands of nodes and edges), efficient graph
navigation is key to the success of MIMI's graph-based modeling development efforts.

For example, we might choose to generate a graph of a large portion of an LP matrix with nodes
defined as matrix columns from set MAC and matrix rows from set MAR. Edges would
represent nonzero matrix elements from the sparse table MATX(MAR,MAC). Each matrix
column also has a domain associated with the meaning of the column in physical terms-blending
activity, time period 1, product PA, location BR, etc. These domains are also associated with
the node representing the matrix column so that we can navigate the matrix graph by specifying
a filter of partial domains for display.

File Edit View Options _0l._
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Graph nodes are treated as objects in the object-oriented programming sense. When the user
selects a node with the left or right mouse button, the graph tells the MIMI database the domain
(of the node) the user has selected. MIMI macros or rules can be linked to nodes so that they
will be run or fired upon mouse selection. Nodes can also be associated with additional data
structures called frames which will pop up editable windows focused on the current domain of
interest with selection with the right-mouse button.

The MIMI database supports inheritance and so does the frame feature associated with the
right mouse button. Any text selected by the right mouse button is referenced through MIMI's
database structures to present a window with the correct data (perhaps inherited) focused on
the active domain of interest.

Node and edge shapes can be selected from a list of standard shapes or from external pixmaps
supplied by the user. Thus, graphs can also be used to create icon-style interfaces for mouse
selection. Pixmaps can also be imported as background (e.g. maps, plant layouts) for superim-
posing graph structures related to data.

Quite often, the x,y positions of graph nodes are related to data in the MIMI database; however,
in some cases we would like the xy positions of the nodes to be controlled by edge relationships.
For these graphs, MIMI/G contains six layout routines which can be specified as part of the
graph set definition.

Node/edge relationships in graphs often reveal structure at a glance. However, they also
provide a natural interface for delving into the MIMI database along the lines indicated by the
mouse selection of the user in an intuitive form.

The visualization of relations and data structures provides insight in many novel forms. Ob-
viously, many physical problems have natural graphical interpretations, and we would expect
that it would be easy to represent the data structures describing these problems in a graph-based
modeling form. In all cases in which we found the specification of a graph set difficult for a
natural problem, upon examination we found that the data structure representing the problem
to be inefficient or unnatural-an observation which had escaped us prior to graphical visualiza-
tion.

The graph-based modeling language in MIMI/G is quite simple to learn and to use. Many graphs
can be specified with a few lines that relate graph attributes to database structures. MIMI/G
facilitates the modeling process by allowing classes of graphs to be defined and by allowing other
graphs to inherit their properties. Thus, neophyte users are able to specify new graphs on the
basis of a collection of example graphs without completely understanding the process. Never-
theless, the ability to develop novel applications of graph-based modeling seems to be limited
to a few-probably the same small subset of people who are good at modeling in general.

Since the MIMJ/G development is new, our observation of users is limited. However, initial
results indicate that there is a high degree of acceptance of the graph-based interfaces among
model developers and end users alike.
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Karmarkar's algorithm (Karmarkar 1984) and other interior

point methods are now regarded as a competitive methods for

solving linear programming (LP) problems. It is therefore

worth-while to undertake development of a professional LP

software based on some particular interior point method. We

describe design and implementation aspects of LPINT, an LP

software package which is based on the primal-dual interior

point algorithm. Its main characteristics can be stated as

follows:

- high performance is assured by using state of the art

algorithms (Lustig et al. 1991, Mehrotra 1991, Altman,

Gondzio 1992) and recent results in sparse matrix research

(George, Liu 1981, Duff et al. 1989).

- the overall system design is influenced by proven systems

which are based on the simplex method (Suhl 1989). It is

also very important to follow the methods and principles

of contemporary software engineering. For example, it is

desirable to attain a high degree of portability. We also

emphasize the need for modularity, ease of use and other

software qualities. Our goal was to obtain these qualities
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without abandoning the usage of standard form PC user

interface (pop-up and pull-down menus, windows etc.)

- two levels of use are provided: 1. interactive menu driven

use,

2. as a library of fortran subroutines which are driven by

the user program

- LPINT was extensively tested using the so called NETLIB

library of LP test problems (Gay 1985).

At each step of the primal-dual interior point it is neces-

sary to solve the presumably sparse linear least square

problem. It is generally accepted that, if problem dimension

is not very big, the normal equations approach using sparse

Cholesky factorization (George, Liu 1981) is an adequate

method. The rows and columns of the normal equations matrix

must be preordered in order to exploit sparsity. We have

implemented the following methods for doing this: 1. Minimal

degree algorithm (usually the most efficient method), 2.

Nested dissection method (uses the same data structure as

minimal degree algorithm, but it is less efficient in ex-

ploitation of sparsity when LP problems are considered), 3.

Reverse Cuthill-McKee algorithm (a standard profile method

which proved to be more efficient than minimum degree algo-

rithm on some rare cases, but otherwise its performance is

poor), 4. Modified Levy algorithm (an alternative profile

method (Billionnet, Breteau 1989)). Among other algorithmic

techniques implemented within LPINT we can mention splitting
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dense columns (Gondzio 1991). In general, our goal was not

to invent new algorithms but to enable making different

comparisons as a starting point for further investigation of

the algorithms and LP matrices. Perhaps the most distin-

guished components of LPINT are different tools for graphi-

cal display of LP constraint matrices and corresponding

normal equation matrices. A visualization of these matrices

could be particularly helpful when one must decide about

efficient solution strategy and possible decomposition of

the LP model. Our ultimate goal, which is not yet fully

achieved is to create an open software environment for

handling and analysing different sparse matrices (Alvarado

1990) which is to be specialized for LP matrices. We believe

that all mentioned features make LPINT a valuable tool for

postgraduate education and research in the field of LP.

>_ user program external files

configuration
options

Common data screens
solution

LPINT optimizer (with <-> iteration log
chosen options) MPS data

other data formats
Interactive problem file
interface: messages

GRAPHICAL reports
windows Subroutine
pop-up menus Library
pull-down (INTERACTER)
menus

LPINT system architecture
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LPINT is currently implemented only on the PC, but the usage

of portable graphical subroutine library (Interacter 1991)

makes possible its porting to other software and hardware

platforms.
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In previous works we designed a general method for linear diophantine constraint satisfaction
problem -denoted by FAST (Fast Algorithm for the constraint Satisfaction Testing)- which allows to
prove the existence or not of a solution for a system of constraints over a finite domain.

Namely, the system has the following canonical type:

(S) Ax_<b: x E D, D discrete and finite

(all the components of the vector b and each coefficient of the matrix A are integer numbers).

This problem arises in several applications in computer science, namely in Artificial Intelligence
area (such that : logical inference and SAT problems, regular problems (pigeon, queen, puzzle,...,
and for constraint logic programming), and in automatic vectorization of programs.

The main characteristics of our method is the solving of a sequence (very short in practice) of
integer programming problems. Each generic problem of this sequence has an appropriate objective
function and a constraint system size lower than the initial system one (very much lower in practice).

The algorithm starts from an initial vector x0 in D. Let us denote

L the subset of the m constraints of (S) already satisfied (e.g. Aix 0 5 bi ic L)
and

G the subset of the other constraints (e.g. Aix 0 > bi i r G).

From this starting point x0 , algorithm FAST generates a finite sequence of k integer vectors xt ,

x2, x3,..., xk in D, until either xk satisfies the system of constraints (S), or the associated domain

(F(S)={x E D I Ax S b) ) is proved to be empty.

Namely, given an element xh of the sequence which is not a solution of (S) (with h < k-I), by
denoting again

L the subset of the m constraints of (S) already satisfied (e.g. Aixh < bi ie L)
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and
G the subset of the other constraints (e. g. Aixh > bi i r G),

the next integer vector x* (e.g. xh+1 ) is obtained by solving (or partially solving) the following
integer linear programming problem

(P) mi f(x)
S.t. Ai x Sbi i E L

xeD

where f(x) is a positive linear combination of the (Aix)iE G:

f(x)=I aXiAix , ai>0 for alliinG.
iEG

The number of iterations of our method is bounded by the number of contraints of the initial
system, but at each iteration a NP-complete integer programming problem is solved exactly or
approximately.

We propose to describe a specific version of algorithm FAST -denoted BFAST- devoted to the
exact solution of linear boolean constraint satisfaction problems., e.g. with a system of this type

(BS) Ax_ b;xE (0,1)n

As a matter of fact, it is well known that a propositional logic clause can be written as a 0-1 linear
inequality in the following way:

the clause
tl V 't2 V -t3 V t4

is equivalent to the diophantine constraint
xl+( l-x2)+(l-x3)+x4 2 1, with xi in (0,1 ), i= 1,...,4.

This means that each xi is a mathematical variable rather than a proposition and is interpreted as
having the numerical value I when the proposition t, is true and 0 when tj is false. The numerical
inequality asserts that at least one of the fourth literals is true.

Thus a set of clauses can be written as a system (BS) corresponding to a generalized covering
problem : all the components of the right-hand side b of the constraints are integer numbers, and each
coefficient of the left-hand side A of the constraints belongs to (-1, 0, 1 )), each row of which
corresponds to a clause.

Important typical applications are the inference problem in propositional logic, and deductive
databases.

Although this constraint satisfaction problem associated with (BS) is NP-complete, it is possible
to design efficient exact methods for several class of such instances. Recently Hooker has obtained
good results using 0-lprogramming tools : his method consists in adding an objective function to the
constraint system (B13S' :, order to solve an equivalent 0-1 programming problem by a branch and cut
method.



33

The associated computational experiments show clearly that his algorithm is largely as fast as the
classical previous symbolics methods (set of support resolution, Davis-Putnam's procedure, ...) for
logical inference problems.

Our BFAST algorithm solves a sequence of 0-1 programming problems (obtained by adding an
objective function to subsystems of (S)). The solution of each generic 0-1 problem is obtained by a
branch and bound method including heuristics, relaxations and reduction procedures.

The associated C code has been implemented on a SUN 3/160 computer with a lot of instances

with a generalized covering type

Ax - b; x E{0,l)n

with A E 0,1,-1.}mxn and b E Zm

randomly generated with the Purdom and Brown model. Each clause is randomly and independently

generated: each literal has the same probability: each clause includes distinct literals.

The computational experiments show the efficiency of our method BFAST.
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Abstract: The problem of bounding the expected value of the objective
function in a stochastic program can be of interest in its own right (for
example finding the expected project duration time in a stochastic PERT
network) or it can be a part of a larger setting such as for example a two-
stage stochastic program. We consider a general LP of the form: Find
the expected value of Q, where Q is given by

Q = min{qyIWy =Li, y >_ 0}pi

where we view wi as the i'th realization of a random variable L', with pi
being the probability that L = wi. Finding the exact value of Q is hard
expect for very small problems. However, for general LPs there exist
different approaches for bounding Q, such as the Jensen lower bound and
the Edmundson-Madansky upper bound. Whichever bound is used, one
will often experience that the bounds are not tight enough according to
some chosen rule. A natural possibility is then to partition the support
of cD and then find conditional bounds on each cell of the partition.

In this paper we discuss different ways of partitioning the support. It is
fairly obvious that one will always partition the cells(s) with the largest
error (where error is measured as the difference between the upper and
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lower bound multiplied by the probability associated with the cell). How-
ever, given a cell, one must decide how to do it. Due to the difficulty of
finding conditional expectations over anything but rectangles we immedi-
ately decided to consider only partitions that affect one random variable
at a time. Also, after some preliminary testing, we decided to split a
cell in the middle, i.e. as close to the midpoint between the minimal and
maximal value as possible. Of course, one could also have chosen the
mean or median. Our computations indicate that that is less useful, but
that the difference is not substantial.

However, our main issue is to understand better which dimension (ran-
dom variable) to partition on. Our results indicate very clearly that
picking the correct dimension is crucial. This is perhaps best understood
if we for a moment assume that we introduce a random variable that
does not show up anywhere in the LP. If we chose to split on this ran-
dom variable, the bounds will remain unchanged, but we now have two
cells, each as difficult as the first one. Hence, we must bring both cells
down to an acceptable error and this is basically twice as hard as bringing
the error associated with the original cell down. In other words, picking
an incorrect random variable has doubled our workload. Of course, we
never have such random variables in a problem. But we will often have
random variables that are totally uniteresting (for example the duration
of an activity in a PERT network which is such that irrespective of the
value taken by this random variable the activity is never critical). The

problem with an incorrect choice is that we never recover from it. With a
totally useless partition, the remaining workload associated with the cell
in question basically doubles, and that cannot be offset later on.

Given this important observation we discuss a number of basic approaches
to the question of how to pick the right random variable. These basic
approaches are combined with different shortcuts. For example, if we
foresee that a given partition will cause one of the resulting new cells
to immediately satisfy the error bounds, we chose this partition without
further testing.

The talk will outline these approaches and present numerical results. We
demonstrate that bad choices can increase the workload several orders of
magnitude.
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Extended abstract

One of the commonly imposed assumptions in the classical sheduling theory
is that any task is processed by one processor at a time [10, 1]. With the
development of technology, parallel systems and parallel algorithms this as-
sumption is not so obvious. For example consider a fault tolerant system in
which several processors test each other [13] or a testing system in which one
processor stimulates the tested object and the other processor is analysing
its output. Another range of applications appears in the field of new parallel
algorithms and corresponding tasks systems.

In recent years several papers dealt with a problem in which a task re-
quires more than one processor simultaneously. Two groups of models have
been distinguished. In the first group of models it is assumed that any task
can be executed on any set of processors under the condition that a fixed
number of processors is assigned to the task [6, 11, 7, 9, 15]. There are three
models in this group [16]: in the model called "sizei" a task requires a fixed
number of processors simultaneously [6, 7]; in the model "cubei" a task re-
quires a number of processors which is a power of 2 (eg. either 1 or 2 or 4
etc. processors) [9, 15]; in the model "any" each task can be executed on
any subset of the processors but the execution speed depends on the number
of processors processing the task [11, 17].

In the second group of models it is assumed that the number of processors
is not important, but the set of processors processing a task [14, 3, 5]. This
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problem is similar to classical scheduling with additional resources [81 and can
be expressed in terms of weighted graph colouring (14]. There are two models
of in this group. These are: model "fixi" where a task can be executed by
a fixed set of processors [14, 3, 51 and model "jetl" in which each task has a
set of alternative sets of processors by which it can be processed.

In this paper we will concentrate on the model "sety" which is a gener-
alization of the model "fixi". Before presenting results we will set up the
problem more formally.

We are given set T of n tasks and set 7P of m dedicated processors. Each
task Tj requires for its processing a set of processors DI simultaneously from

Isl
a set Sj of such sets (ie. Si = UDI). We will call these DI sets processing

l11
modes or processing configurations of task Tj.

A processing time of a task may depend on the set of processors processing
it. We assume that processing times of tasks are given in the matrix:

X={t°'': tP' E R+ is a processing time of task T, in processing mode i
requiring a set of processors D1 ; if Ti cannot be scheduled in this mode then
tni = +± }

Tasks are independent. We will analyze preemptable and nonpreemptable
task cases, In case of preemptable tasks any task can be at no cost interrupted
and restarted later probably in different processing mode. In this case we also
assume that processing percentages of tasks processed in various processing
modes are "additive" or in other words can be accumulated. For example
if some task has been processed 1 second in processing mode A while the
total processing time for this task in this mode is 10 seconds, then the task
is processed in 10%. If next, this task has been processed in additional 20%
in some other processing mode then it is processed in 30%. After restarting
in the processing mode A this task will occupy processors appropriate in this
mode in 7 seconds. This approach is similar to the case of scheduling on
unrelated machines or scheduling under resource requirements [4].

An optimality criterion is schedule length (C,,,..).
To denote analyzed, problems we will use an extended version of the

scheme proposed by Graham, Lawler, Lenstra and Rinnoy Kan [12] with
later extensions [8, 16]. In this notation a scheduling problem is described
by three fields. The first field describes processor system. In this work it will
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be letter P optionally followed by positive integer which denotes the number
of processors. If there is no constant after P then the number of processors
is not fixed and is given in the current instance of the problem. The second
field describes the task system. Word "pmtn" is used to denote that tasks are
preemptable, if this word is -absent tasks are nonpreemptable. Word "seti"
denotes simultaneous requirement of multiple processors by tasks. More-
over in general any task can be processed by more than c . such a set of
processors. The last field denotes the optimality criterion, iL is Cm...

In the paper we will present a dynamic programming based procedure to
solve optimally simple cases of the nonpreemptive version of the problem.
This will result in pseudopolynomial algorithms. For a general case of the
nonpreemptive scheduling a heuristic will be proposed and its worst case
behavior will be analyzed. The preemptive version of the problem will be
solved via linear programming. The organization of the paper is as follows.
In section 2 the case of nonpreemptive scheduling is considered. In section 3
the preemptive version of the problem is solved.

Nonpreemptive Scheduling

In general the problem PI eti I C,,, is NP-hard. This can be easily shown
by a reduction from the set partition problem to problem P21 set, I C,,.
For three processors and tasks requiring processors from only one set the
problem is NP-hard in the strong sense [5]. Thus, it is unlikely to propose
an algorithm solving these problems in polynomial time. Moreover, for more
than two processors it is hard to expect pseudo-polynomial time algorithm.

In this section we will present pseudo-polynomial time algorithms for
problems P21 seti C m,.. and a restricted version of the problem P31 seti I
C,,.., respectively. Then a simple heuristic for the problem P1 seti I C.
with the worst case behavior bound equal to m, will be presented.

Preemptive Scheduling

In this section we will analyze the problem PI seti,pmtn I C,,,. In general
(when the number of processors is unbounded), the problem in question is
NP-hard in the strong sense [2]. For a limited number of processors however,
this problem can be solved in polynomial time using linear programming
procedure.
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Abstract

The population of parallel genetic algorithms (PGAs) can easily be split up
to match the needs of a coarse grained parallelism. A duster of interconnected
workstations, seen as an MIMD-architecture, is the chosen hardware to express
this kind of parallelism. A PGA implementation, as any other parallel algorithm,
is bound to an execution environment, giving sustained support for its realization.
Our execution environment, called PARNET, is constructed as a distributed
server referred to as base layer. The next higher level of abstraction is provided
by the object oriented interface layer, allowing to construct the PGA layer on top
of both. We introduce the PARNET conception, leading from the single machine
operating environment to the distributed realization of a PGA.

1 Introduction

Genetic algorithms belong to a class of optimization strategies, which can be imple-

mented most efficiently on MIMD-architectures. A PGA population matches the needs
of a coarse grained parallelism for efficient, almost asynchronous processing [1].

The realization in a cluster of interconnected workstations must be supported by an

execution environment, providing the necessary abstraction of the interconnecting net-
work. While distributed operating systems like Helios provide and prescribe a spe-
cialized support for distributed computing in general, and therefore allow a kind of
abstraction from single processing nodes, this support is missed on a network of gen-

eral purpose workstations. In this context facilities like remote procedure calls and
remote execution can only be seen as a basic access to the potential summable com-
putational power of a workstation cluster.

The PARNET computation environment is an approach to provide better access to
the overall computation power in distributed environments. Needed administration

for distributed objects can be done on a per application base, instead of the operating

"This research project is supported by the Deutsche Forschungs-Gemeinschaft
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system level. So the PARNET functionality is a subset of what could be expected from
a distributed operating system. Typical problems of these systems can be avoided or
at least alleviated and implemented more efficiently.

2 PARNET

2.1 Overall Structure

The overall structure of PARNET is a per application distributed server. The parts
of this server are constructed following the layer-model shown in figure 1. In each
processing node, there is at least one part of the server running. The base layer han-
dles main topics of abstraction from the network environment and provides low level
message passing and semaphore based synchronization crossing the machine bound-
aries. The application programmer can use the base layer interface directly or rely on
the next abstraction level, provided by the interface layer. This layer provides more
complex synchronization features in an object oriented fashion. Build on top of this
layer some framework for implementing parallel algorithms is provided. Here we show
a PGA-layer matching the needs for coarse grained parallel processing of genetc al-
gorithms. But it may be for example exchanged by another layer, e. g. supporting a
general framework for event driven simulation.

PGA Layer
Interface Layer

Base Layer

Figure 1: PARNET layer model

The implementation is built on the widely accepted programming model of multi-
threaded tasks, available on state of the art operating systems (i.e. Mach, Solaris 2.x,
Helios) together with a high reliable communication facility (TCP/IP, Helios message
passing) (5]. The thread programming model must at least provide a fork ) call to
start threads and binary semaphore operations (P0, VO or Signal(), Wait()).

2.2 Base-Layer

Providing a flexible and extensible base environment leads to the main functionality of
the base layer:

"* initial booting from the local workstation,
"* crash detection for remote computing nodes,
"* hierarchical organized naming scheme for several kinds of objects,
"* efficient message transfers by building optimal sized data packets,
"* dynamic creation of name addressable communication ports.
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To operate on a per application base, the PARNET environment is bound to the
application itself and spreads out beginning from the local machine. Because of this
mechanism an errorness application can only crash down itself, whereas a system service
like implementation may affect further applications directly or indirectly.

A minimal necessary support for distributed applications is a crash detection facility.
Any desirable crash recovery is at least somehow coupled with the application, or leads
to a specialized parallelization paradigm, for which the problem of recalling a past state
can be solved efficiently. Because we will not concentrate on a specialized parallelization
method in the base layer, we support crash detection and following shutdown of the
application.

For naming and addressing of distributed objects in PARNET, we provide a hierar-
chical name space. Again we benefit from the per application approach in PARNET.
It is obvious, that an application can trust itself, and therefore no access control or
authorization is needed. The object name-tree is distributed between the server parts,
allowing local interpretation per context. A caching strategy is used to avoid unneces-
sary communication requests in searching objects (locate(}). Figure 2 shows a snapshot
of a typical name space. Terms in quotation marks denote user created objects, which
may be functions, classes and their methods, mail-ports and further object names.

-classes "individual' "genetic methods"

7 00 -functions "accessable functions"

--Scylla----|- Sc--mail-ports 
"mail-porl names"

Root - 01 r mail-ports• •.

t--Csemaphores ...

--classes...
- Charybdis - 00--- functions ...

t._ mail-ports - -

Figure 2: PARNET name space

The addressing of any object in PARNET is based on this naming-scheme. As an
example, if we address data to "/scylla/01/functions/beep", on host "scylla", server-
part "01", a function beep is called.

Addressing data to "mail-port/incoming_data" will search for a mail-port with the
name "incoming.data" first in the local context and second in a remote context. The
first occurrence of the name is the address the data will be delivered to.

Although communication shows to be still the bottleneck in most distributed applica-
tions, some afford can be done, to alleviate this fact [8].In our multithreaded implemen-
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tation there is a sending thread for data communication to each remote server-part.
So sending data occurs only if this thread is actually executing. It is a quite natural
approach to pack together as many messages as currently available in order to have a
good chance to achieve efficient transfer rates.

Traditionally only static structures for communication are realized in distributed ap-
plications. This fact is normally imposed by the underlying support-tool (Interface
Description Language (RPC), or Component Distribution Language - Helios). Hence
dynamic creation of communication ports is an unusual feature, allowing to send data
to mail-ports which are not created so far and assuming, that the addressed mail-port
will be created in near future. There are several situations where this may simplify the
application code and avoids explicit synchronization, before starting to communicate.

2.3 Interface Layer

Object oriented programming has proved to be a worthy software engineering approach.
An object is described by a class defining a data type for which access to data is
restricted to a specific set of access functions. The PARNET base layer is designed to
handle a wide range of parallel distributed applications. Hence access at the abstraction
level of the base layer is indispensable. Interface classes are used to provide access to the
PARNET base layer at a higher level of well known concepts of parallel programming.

The PARNET interface layer uses the model of invoking objects remotely to provide
access to remote data and control of remote threads. Application data can be declared
as a class and can be handled as an object thereafter. Threads of coarse grained
parallelity are defined as a set of member functions of a class. Access to remote objects
is provided via numeric object identifiers.

The idea of using classes leads to the object oriented model of inheritance, which is
extensively used in the PARNET interface. A subclass can be derived from its base
class, while the properties of the base class are inherited to the subclass. Inheritance
is used to gain access to the base layer at different levels of well known programming
concepts. The level of abstraction grows analogous to class tree inheritance. Access is
permitted at any level of abstraction. Calling a meaningful operation on application
level forces the processing of a unique chain of arbitrary operations along the directed
graph of the interface class hierarchy.

Let us consider a simple example. At a low level of abstraction a locking primitive is
provided by the 1ARNET base layer. The class Monitor is derived from Locking and
provides a Hoare monitor using the inherited properties from Locking. In a next step
Monitor inherits its functionality to Semaphore, which builds a counting semaphore
using Monitor methods. In a last step Fifo Semaphore is derived from Semaphore,
using a couple of semaphores to construct the Fifo behavior.

Figure 3 introduces the simplified PARNET interface hierarchy of derived classes. Base
classes (appear in roman characters) are wrappers around the PARNET base layer.
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-Shared Memory {-Strong Consistency - Reader- Writer
Y Weak Consistency

Message -

Queue Fifo Central debug

- L Lifo

Synchronous
-Thread Asynchronous Topology

Parnet-

Barrier

Condition
- Locking

Monitor Semaphore Fifo Semaphore

CpU
- Info Network Machine __ __ Server Thread

Figure 3: The PARNET interface hierarchy

These abstract classes cannot be used by the application programmer. They are base
classes from which user classes at a higher level of abstraction are derived (appear in
emphasized characters).

Four base classes represent the functionality of the PARNET base layer. The Message
class derives two more base classes, which provide different communication interfaces
to the programmer. Different kinds of Queues are provided as well as a distributed
virtual Shared Memory. Above the latter class well known communication patterns like
single-writer-multiple-reader can be built using the Semaphore class. Threads may be
spawned in a Synchronous or in an Asynchronous way; a kind of processor group facility
is provided by the Topology class. The Locking base class inherits its functionality
to Barrier, Condition, and Monitor. These classes are used to synchronize threads.
To enable threads to react on the network computing environment, an Info class is
provided.

The program development of parallel applications is simplified by the usage of shared
memory in comparison to message passing. A drawback using shared memory in a
distributed environment is the relatively slow communication medium (e. g. ethernet).
The PARNET interface provides features to take decisions on the distribution, protec-
tion and consistency of shared data to minimize the base layer network traffic.

Using this interface non trivial distributed parallel applications can be built, whose
complexity regarding control and communication patterns surpasses usual remote pro-
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cedure calls. Once invoked, threads may have "a life of their own" communicating with
other threads without the need of a central instance. This is an important demand for
using the interface by Parallel Genetic Algorithms.

2.4 A PGA Layer -

A PGA application can be characterized by the following issues: All evolved threads
perform the same non trivial procedure of iterations. No update of systemwide infor-
mation has to be done frequently. Instead, global information is either readonly or rare
and of weak consistency condition. Most steps of execution can be done using local
data, which is private to each thread.

class individual derived from Parnet // Class uses PARNET interface
shared data my-solution // My own solution
shared data all-neighbors // Other solutions I know

virtual function terminate // Members to be declared in
. derived classes

virtual function accept

function main // The predefined GA interface
while not terminate ()

selected-neighbor = select (all-neighbors)
teoupsolution = crossover (my-solution, selected-neighbor)
temp-solution = mutation (tamp-solution)
temp.solution = local-opt (teamp-olution)
if accept (temp.solution, all-neighbors)

my-solution = temp-solution

end while
end function

end class

Figure 4: An abstract PGA interface class using virtual functions

In the following the pseudo code of a GA thread class is presented as an example for the
implementation of user interface classes. Figure 4 shows an abstract class Individual,
which is derived from several PARNET interface classes to provide remote facilities.
The shared data represents the current solution in the process of iteration and the
access to the solutions of other executing individuals. Write access is permitted to
my-solution, which may be updated by the individual. The access to all-neighbors is
protected by a readonly constraint.

Apart from shared data, there is only one member function main defined. This is the
loop called at invocation time by the thread class. It contains the skeleton of a generic
PGA [6]. For a number of iterations defined by terminate the function select chooses a
suitable partner for its recombination. The crossover operator recombines the genetic
code of the current solution with the selected neighbor to a new (temporary) solution.
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class my-individual derived from individual
virtual function terminate

body of function ... // Define the implementation to be
end function // executed in the interface method main

virtual function accept -

body of function ...
end function

end class

Figure 5: A user defined PGA class

Mutation and local-opt are optional operations on the new solution. The accept oper-
ation compares the recombined new data with the solutions of the neighborhood and
indicates whether the old solution is to be overwritten by the new one. Otherwise the
new solution could not dominate the older one and is discharged immediately. In the
case of overwriting, the new solution is forwarded to the individuals being neighbors
to the one we looked at.

No object of individual can be invoked. Instead, the abstract class inherits its interface
to a user defined class. This user defined class is responsible for the implementation
of the functions declared virtual in the base class. Figure 5 shows an implementation
class derived from individual, defining the details of the PGA operations used by the
interface class.

program
topologyCmy-individual> population // Declare a topology of threads

population.number(32) // Define the number of individuals
population.exec() // asynchronous start of remote threads

population.vait() // Wait for tfirmination of all threads
end program

Figure 6: An program example using the PGA interface

Figure 6 gives a program example of the above described interface. A topology of
individuals is defined within the population object. The member function number is
called to determine the size of the population. The exec member invokes 32 remote
individuals asynchronously. The wait member blocks until all individuals terminate.
The called member functions are defined in base classes at different levels of abstraction.

The definition of the methods, introduced in figure 6, are derived from PARNET
classes. A review to figure 3 may help making the class interdependencies more trans-
parent. The method exec lives in class Thread, while wait is defined in class Asyn-
chronous and number is a member of class topology. The resulting source code repre-
sents the structure of the program in a obvious way hiding the details of networking.
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3 Conclusion

We presented the PARNET approach, leading from single machine computing envi-
ronments to a realization of a distributed application environment in a workstation
cluster. The object oriented appiroach fits best the coarse grained parallelism we wish
to realize. Following these approaches a framework for parallel genetic algorithms has
been introduced.

Well known network facilities, socket based communication, remote execution and re-
mote procedure calls do not provide the desired programming support. A specialized
distributed operating system is missing the desired robustness for carrying out ev-
erydays work [21. The PARNET approach situated above the base operation system
pursues a per application environment to avoid or at least alleviate typical problems
of distributed computing.

The PARNET idea has not been the only approach until now. A programming tool,
called PVM, with little different goals and a more different conception has recently
become available [3]. Some other related work concentrate on the object oriented
interfacing [2],[7],[4]. Some affords were made to hide nearly any distribution. Our
work is more reflected by hiding hard to use details of networks and provide the ability
to visibly express distribution.
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.1 The purpose of this paper is the description of a system that, while fully exploiting: and
integrating the advanced features of the Nficrosoft Excel commercial spreadsheet
software and Hewlett-Packard's NewWave otlice environment, extends them with new
opt imisation and multiple criteria group decision model building capabilities.

The new features include a mneta-model building language which allows the automatic
generation of a class of mathematical programming spreadsheet models dynamically
linked to public and private databases. These models can immediately be used for both
intuitive experimentation and optimisation. Figure I shows a sample model.
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An archiving tool allows the user to save and later retrieve any given state of the
model together with a freely selectable set of characteristic indicators. The indicators
belonging to different saved states of the model can be easily compared using graphical
charts. Figure 2 shows the chart used to compare the saved states.
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Figure 2

The system works in both the Apple Macintosh and the Microsoft Windows

environments. Its functionality is significantly enhanced with inter application
communication and dynamic data exchange tools that we extended beyond the built in
capabilities of the commercial environments to computers connected by a network.
The optimisation and multiple criteria decision making can in this way be performed in
an environment where dynamically changing data originating from shared data bases or
other members of the decision making group are permanently taken into accc,,,nt.
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The decision makers' communication needs are supported at two different levels. The
first level is the already mentioned dynamic data exchange. A hot link to data can be
established without requiring the intervention of the user who is linked to the data.
Figure 3 shows the corresponding interface under Microsoft Excel.

RlM e I~i I fExem ! ied)sroe

Figure 3

The second level is implemented under Hewlett-Packard NewWave. It lets the partners
view all objects on each others' oflice desk. They can even copy or move objects to or
from their partners' desk. Of course, permissions for viewing, copying, moving etc...
can be selectively assigned to all types of objects. This feature complementing the
functionality of NewWave is only implemented on a PC under Microsoft Windows.
Figure 4 shows the view of the office desk of another partner.
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Figure 4
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Absijact - The objectives of this paper are to provide the contevt for private sector

tollwavs in Australia. roe'plain the trafficforecasirnginerhods employed, and toidenrifythe

evalubtion criteria. A ttention is focused on the technical aspects of the traffic estimation

,and evaluation procqes which takes into account traffic forecasting techniques. traffic

diversion and assignment, the temporal distribution of peak-hour traffic demands. vehicle

operating costs and fuelconsumption. monetary values of travel time and discount rates.

1. INTRODUCTION

Traditionally, the main roads in Australia have been constructed by state govern-
ments through their Department of Main Roads. However, in the state of New
South Wales in recent years, the policy has shifted to accommodate, and then

encourage, private sector participation in the construction and operation of road
facilities. The 400 million Sydney Harbourr Tunnel, which has been under
construction since early 1989, is an example where the state government has
allowed theVconstruction of a road facility funded by a private consortium.
Furthermore, the Department of Main Roads (now Roads and Traffic Authority)
of the state of New South Wales has called for expressions of interest for three
privately funded toll roads - namely: the Buladelah Toliway, on the Pacific
Highway, about 250km north of Sydney; the F4 toll road in the north western
sector of the Sydney metropolitan area; and the F2 toll road in the western fringe
of Sydney. Attracting private funds will allow the Roads and Traffic Authority. to
accelerate the construction of major road projects in accordance with the Roads
2000 Plan. The total funds available from both Commonwealth Government
sources and State sources to the Department of Main Roads in 1986/87, for
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ECONOMIC ANALYSIS OF CROSS HARBOUR TRANSPORT

Accuracy of the economic evaluation of toll roads depends on successful

forecasting of the level of traffic using the transport facility. Figure I shows the

methodology adopted by the senior author in the economic evaluation of the

Sydney Harbour Tunnel projict and other alternative cross harbour transport

proposals. Th. four lane, 2.4 km long tunnel, now under construction, is,

conce.ptua!'y, a parallel facility to the existing bridge, which has 8 road lanes and

two train tracks connecting the north and south banks of Port Jackson and the

Parramatta River(the Sydney harbour).The investment and operati ng costs will be

recovered by the toll levied on traffic crossing the harbour using either the

(existing) bridge or the tunnel (when opened in late 1992), over a 35 year period

commencing on May 1987.
The topmost cell in Figure I refers to traffic projections related to Average

Annual Daily Traffic (AADT). In 1985, AADT on the existing Harbour Bridge

was 178,180 vehicles (DMR, 1986a, b). DMR (1986a) provides the following

traffic projections for the Sydney Harbour Bridge, based on past traffic trends.

Max Growth S'mh = 178372 + 3358x

200000
Min Growth Y,,.. = 1 +0. 14e"°°9'

where,
',f. = estimate of AADT at maximum growth rate,

',fln = estimate of AADT at minimum growth rate; and

x = number of years from the base year 1985.

Note that in these two formulae the maximum growth implies a constant annual

increment of some 3360 AADT each year, whereas the minimum growth is based

on a daily upper wsaturation level" of 200,000 vehicles for AADT.
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Fig. 1: Flow Diagram of Traffic Forecasting Methodology and Economic Evaluation Model for

Sydney Cross-Harbour Transport
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Gutteridge, Haskins and Davey (1986) - the traffic consultants to the Sydney
Harbour Tunnel: Transfield-Kumagai Joint Venture - approached traffic
projections from a growth in southbound traffic on the Sydney Harbour Bridge
for Average Annual Weekday Traffic (AAWT). The shape of the mathematical
function is a logistic curve based on "a strongly linear historic trend and a long
term growth constraint, based on a maximum Service Volume, creating a
mathematical asymptote for the growth curve (Guttenidge, Haskins and Davey,
1986). Traffic projections for Average Annual Weekday Traffic (AAWT) up to
2021 are illustrated by Cameron McNamara (1986a), the company responsible for
preparing the tunnel environmental impact statement (EIS). These include 'high",
"most likely'and"low' projections. For example, thelhigh projection is calculated
from:

135000
1 + 10..06435 + o02s1z)

where
w-r =estimateof AAWT southbound on bridge and tunnel; and

x = number of years from the tunnel openning year 1992.

The, "most likely" traffic projection assumed great importance in the final
appraisal of the project because it formed the basis of the guaranteed revenue

stream for thedevelopers that was'underwritten"by government. An independent,
expert review of the traffic forecasts and economic evaluations was sought
from Unisearch Ltd (1987a).

It is at this point that our approach differs from that of the consultants to the
Joint Venturers, and an original traffic model was developed. The preferred
approach is to make projections of.AADT and then partition them into average
annual weekday traffic (AAWT)and Average Annual Weekend Traffic (AAWE).
Based on time series data of traffic volumes on the Sydney Harbour Bridge from
1968 to 1985, regression analysis leads to the following relationship:

S'wt = 4650 = 0.766Y(r2 = 0.99)

where,
VwE = estimate of average annual weekend traffic (AAWE); and

Y = average annual daily traffic (AADT).

Average Annual Daily Traffic (AADT) equals fi' e-sevenths of Average Annual
Weekday Taffic (AAWT) plus two seventh-, of Average Annual Weekend Traffic
(AAWE). By rearranging. and ignoring public holidays:

AAWT = 7/5(AADT - 2/7AAWE).
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For the calculation of the costs and operational benefits associated with the
tunnel proposal, three time periods for each weekday are defined:

Peak periods - 7 to 10-am and 4 to 7 pm;

off-peak periods - .10 am to 4 pm and 7 to II pm; and

night period - 11 pm to 7 am.

As travel times are flow dependent it was necessary to estimate typical hourly
traffic flows for these three time periods over the life of the project (for evaluation
purposes taken to be up to 2021). Based on historical data, regression analyses of
the temporal distribution of traffic, as a function of Average Annual Weekday
Taffic, leads to the following equations:

*'p = 6.593Yv'T 0
7 (r2 = 0.99)

Y'p = 0.070YwT' 16 (r2 = 1.00)

where,
='p estimate of peak period traffic volumes;
= estimate of off-peak period traffic volumes; and

YWT = estimate of average weekday traffic volumes.

To ensure the temporal distribution of traffic is properly constrained by the
total average daily traffic figure, the estimate of the night period traffic volumes Y.
becomes:

S= YW ,- YWT - ,oP.

Traffic assignment to a network requires the rate of demand to be established.
The hourly traffic flows for the three time periods give the demand rate and the

impactof projected traffic volumes on travel time were estimated using Davidson's
(1966)travel time/traffic flow relationship. Thus, travel times at different times

of the day are computed firstly for the bridge only situation and then for the
bridge with tunnel alternative.

The bridge only base case and the tunnel alternative can be compared in the
form of four different measures: travel time saving; fuel consumption; vehicle
operating costs; and accident savings (Table 1.) As mentioned before, the travel
time differences were based on Davidson's model. Differences in fuel
consumption were computed using the model reported by Bowyer (et al., 1984,
1985). Differences in vehicle operating costs were computed using published data
from New South Wales Road Freight Transport Industry Council, (1986) for
trucks and Royal Auto (July, 1986) for motor vehicles. Abelson (1987) also
provides comprehensive methods to compute vehicle operating costs. Accident
costs, which average at I cent per vehicle kilometre, were based directly on
Department of Main Roads data (Cameron McNamara, 1986b), and were applied
to the distance saving of 800 metres via the tunnel made by 33 per cent of weekday
and weekend traffic. Table I sets out some economic evaluation parameters: the
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tunnel construction cost, its annual maintenance and operating cost, and the
monetary items for travel time, vehicle operating cost, fuel saving and accident
costs.

Table 1. Summary of Economic Evaluation Par'ameters for the Sydney Harbour Tunnel

Parameter Value

Construction costs $395 millon
(limited clearance tunnel)
Annual operating / maintenance cost $7.9 million
Weighted monetary value of time $6.00 per peak hour (1992-1999)

$7.70 per hour (1993 onwards)
Vehicle operating cost $0.16 per veh / km
Vehicle'occupancy 1.4 persons / vehicle
Vehicle accident costs $0.01 per veh / km
Fuel savings $0.55 per litre

135000
Traffic estimation ("most likely") Y = 1+00

1 +10 -(0."+0.028z)

for bridge and tunnel where,
Y = average annual weekday

traffic southbound
x = number of years from the tunnel

openning year 1992
Benefit cost ratios 1.9 at 4 % p.a. discount rate

1.2 at 7% p.a. discount rate
0.8 at 10% p.a. discount rate

(Source: Cameron McNamara, 1986b)

The basic economic evaluation parameters given in Table 1 were used both by the
tunnel proponents and by Unisearch Ltd. The most likely traffic projection used
by the consultants to the Joint Ventures is given in this table. From these inputs,
the consultants undertook an economic evaluation of the tunnel proposal and
estimated the benefit cost ratios as ranging from 1.9 to 0.8 depending on the
discount rate adopted.

The independent economic evaluation by UnisearchLtd(1987a)also used the
values in Table I as inputs but applied the traffic model described above to give a
more accurate representation of the temporal traffic flows over the bridge and
tunnel. A micro-computer model was developed to facilitate sensitivity analyses

for variations in costs and benefits and in the values of the economic evaluation
parameters. This approach gave lower benefit cost ratios than those derived by the
consultants to the joint ventures and given in Table I.

The additional advantage of the Unisearch Ltd approach was that it allowed a
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ready comparison of other cross harbour transport proposals, such as an
augmented Sydney Harbour Bridge and a cross harbour rail tunnel (Unisearch,
1987b). Figure 2 illustrates these alternatives together with the road tunnel
proposal. The augmented bridge gave the highest benefit cost ratio, primarily
because of its relatively lowcapital cost of $44million.A rail tunnel.together with
the extra two traffic lanes on the Sydney Harbour Bridge (replacing the existing
rail tracks), gave a benefit cost ratio very similar to that of a road tunnel.

In May, 1987, the goverment decided to proceed with the tunnel project, despite
widespread media criticism of its financial viability. The determination by the
Commissioner for Main Roads used higher monetary values for travel time than
those in Table I , and included a salvage value for the tunnel. The tunnel is under
construction and is scheduled to open toroadtralfic in September, 1992, Todate,
traffic using the Sydney Harbour Bridge is below that forecast by the consultants.
to the joint Venturers.
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Fig. 2: Sydney, Harbour Tunnel and Alternative proposajls.
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ROUTE CHOICE MODELLING

Whereas route choice modelling was not necessary in the evaluation of the
Sydney Harbour Tunnel because the traffic demands are split between parallel
facilities according to Wardrop's principle of an equal travel time assignment, it
was an important technical feattire of traffic modelling of both rural tollways and
metropolitan toliroads. The government's principle in the development of any toll
road is that a"free,"alternative, route must be available for drivers. Therefore, a
route choice model was developed by the authors to forecast future level of traffic
on three separate toll road proiects at various levels of toll charges. Price elasticity
of demand for cars and trucks are available for numberofUS toll facilities, as
shown inTable2. Ingeneral,when the cost of using the toll facility is increased, the
traffic volume is reduced.

Table 2. Price Elasticity of Demand for Cars and Commercial Vehicles on US Tollways

Commercial
Cars Vehicles

Location

Toll Increase Elasticity Toll Increase Elasticity

I. ROADS (%) (%)

Pennsylvania 24 -0.08 24 -0.06
New Jersey 20 -0.13 30 -0.17

Indiana 20 -0.31 30 -0.17

Massachusetts 30 -0.18 30 -0.17

Oklahoma I 17 -0.21 33 -0.25

2 17 -0.30 33 -0.08
3 9 -0.25 22 -0.13

4 18 -0.25 36 -0.19

5 11 -0.31 44 -0.12
2. BRIDGES
Delaware 20 -0.26 43 -0.25
Chesapeake Bay is -0.15 15 -0.26

(Source: based on Wuestfeld andRegan, 1981)

The authors applied a binary logit model to split the total traffic volume in a
given corridor between the toll road and the non-toll road. Ben Akiva and Lerman
(1979) show the applicability of logit formulation for choice modelling purposes.
The formula for a binary choice logit model for route assignment is:

P(t) = I
I + exp(a + 13' x1 + 132x2 + 033x3)

where,
P(t) = probability of using the tollway;
x1 = differences in route distances;
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x! -= differences in route travel times;

X3 = differences in operating costs;
a = constant term: and

P•,:,3 = coefficients.

However, because of the paucity of data the three explanatory variables are
combined into one standard, composite, variable, called generalised cost - which
is a combination of travel time and cost - as follows:

P(t)-
I + exp(o3x)

where x = differences in generalised cost.
The model was calibrated using the data obtained from Sydney - Wollongong

Tollway (see Section 2) in 1987.

The above logit model was applied, for example, in traffic estimation and appra-
isalof a proposal for a tollway fromQueanbeyan(nearCanberra, Australia's capital

city) to the South Coast of New South Wales. This particular application was part
of the research and development ofa consultancy project undertaken by all three
authors on behalf of Unisearch Ltd. for a private - sector consortium. The
essential features of the existing situation are described as follows. The distance
from Canberra to Moruya (on the South Coast) via the Araluen Valley is 162 km.
The Araluen Valley road is about 7 m wide and of gravel construction. It is a very

steep mountain road with many tight curves and is presently not a feasible route
for Canberra - South Coast traffic. For instance, field studies showed that driving
from Moruva to Araluen on a Saturday morning in April (Autumn), only three
cars and two motorcycles were observed. On the other hand, Canberra to Moruya,
via the Kings Highway (Main Road 51) and Batemans Bay, is 152 km. Frcm
Braidwood to Batemans Bay the distance is 61 km, with a winding section of road
through Clyde Mountain. During the weekdays, thetraffic flowis light between
Bungendore (25 km to the east to Queanbeyan) and Batemans Bay, because two
thirds of traffic to and from Queanbeyan leaves Main road 51 at Bungendore.
with destinations to and from Goulburn, located to the north.

Over a twenty - year period from 1967 to 1988, traffic counts by the Department
of Main Roads, New South Wales, show that the number of vehicles using the
Kings Highway has increased from about 1000 vehicles per day to about 3000
vehicles per day. However, the average traffic counts conceal both the seasonal,
and weekend, characteristics of traffic. This general level of traffic activity noted
above was confirmed by a survey undertaken by the local government autority,
Tallacanda Shire Council in December, 1987.

Fourdifferent alignments proposed for the toll road, and considered in our

,inal vis. are schematically shown in Figu'e 3. In the context of the wider land -
use / transport system, we observe that the toll road concept is a sound one. It is
consistent with current New South Wales Government policy on roads. An
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alternative, free, road would be available to motorists, irrespective of any toll road
alignment finally adopted. A toll road between Queanbeyan and Moruya would
give genuine route distance saving to motorists (who currently use Kings Highway
to gain access to and from the coast) from Goulburn, Canberra, and parts of
country New South Wales (Fig. 4). The alignment would also make travel from
Melbourne via Canberra to the South Coast almost as shoVt as the currently
favoured route via the Princes Highway (782 km compared with 742 km).
Distance savings to road users represent genuine resource savings in fuel

consumption and vehicle operation costs.

Queanbeyan Existing road :140 km

Batemans Bay

Toll road I i
alignments: 142 or 147 km

Queanbeyan Existing road: 167 km

sTog road as kMoruya

alignentsn115:r 120km I

EIlstinlg road : 90 km

Queanbeya E Braidwood Existing road 61 km

Toi road I
allignments: a I

'1 or S~~kaign'ments: ••I Moruya

.or93km

Existing. readt: 90 km'Queanbeyan • .Br2idwood Existing road : US km

Btmn Bay

alignments : ofl roa

41 or 4 lurealignments : 4V•

61 or 69 km

i Fig. 3 Network Representation of Toll Road Alignments.
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Fig 4. Effect of Toll Road on Distances to Moruya (South Coast).

The micro-computer-based traffic forecasting model that was developed allows
avariety of assumptions about toll road characteristics to be analysed- length,toIls
charged, whether tolls are indexed or unindexed. or whether drivers decide on
their route choice because of total, or perceived, costs. Toll charged, value to
travel time, and fuel consumption costs, are taken into account in the analysis
based on perceived costs. In addition, vehicle operating cost (which includes
depreciation and tyre wear) is included in the total costs based method. The level
of trafficobtained from the total costs method is generally less than that obtained
from the perceived costs method because of increased operating cost tor toll road
users.The results of this comprehensive analysis, usingalogit model to take into
account behavioural response of travellers for the two toll road alignments, have

been presented elsewhere (Unisearch Ltd, 1989).

A brief summary of this comprehensive analysis makes the following points.
Based on the historical growth of traffic on the Kings Highway, and traffic
projection by trend extrapolation into the future, it can be shown that a toll road is
not financially viable (given its construction, operation and maintenancecosts).
This is summarised in Fig 5 for the corridor between Queanbeyan and Batemans
Bay and in Fig 6 for the corridor between Queanbeyan and Moruya. The graphs

show the relative traffic levels for long and short alignments, for perceived and
total costs, and for four toll levels($5 for cars, $10 for trucks; $10forcars, $20 for

trucks; $20for cars,$30fortrucks; and $ 30for cars. $ 50for trucks). In conclusion,
the level of traffic on these toll road alignments, considerng the historical
growth of traffic alone, is insufficient to justify investment.



66
S2000 -

O1800Total cost - Short Alignment

1600 U Total cost - Long Alignment
0 Perceived cost - Short Alignment

S1400 - [• Perceived cost - Long Alignment

S1200

,1000
a 800

-600
0

E 400
" 200

S0
.-,

$5 and $10 $10 and $20 $20 and $30 $30 and $50
Toll Level (For Cars and Trucks)

Fig 5. Tralfic Estimates for Different Toll Levels - Corridor Betkeen Queanbeyan

Batemans Bay (South Coast)

3000
I Total cost- Short Alignment

• 2500 Total cost- Long Alignment
I Perceived cost -Short Align.

o-00 • Perceived cost -Long Align.
2000-

'0

S1500
i-,
S
E 10001
A

"10 500

$5 and $10 $10 and $20 $20 and $30 $30 and $50
Toll Level (ForCars and Trucks)

Fig 6. Traffic Estimates for Different ToU Levels - Corridor Between Queanbeyan and Moruya
(South Coast)



67

However, trend extrapolation can be a misleading technique for long-term
traffic forecasting, especially when there, is substantial change-irn the land-use
context. Therefore, the second stage of the analysis took a different approach. We
asked the question: what level of traffic would be required to give a return on
investment assuming construction costs and maintenance costs of the toll road
were known? This is referred to as the break - even traffic analysis. Steps involved
in this break - even analysis are shown in Fig 7.

[onsrcti ot Maintenance cos Rat .e of return1
on investmn

_ [Annual cs J
I

Toll level f Traffic Break-even
composition revenue

Level ef 1
traffic required for

break-even revenue

Fig 7. Conceptual Models for the Estimation of Break - Even Traffic Levels for Toll Road
Investment.

The results are summarised in Fig. 8 . The graphs show the traffic volume
required over a period of 30 years to make the proposal financially viable (8
percent return on investment) for three toll levels($5 -car, $10-trucks; $10-cars,
$ 20- trucks; and $ 20 - cars, $30- trucks). Assuming a toll level of $10 for cars,
the traffic levels required initially would be in the order of 14000 vehicles per day.

70000 . - Toll level $5 ($10 for trucks) _

60000 - Toll level $10 ($20 for trucks)

0 Toll level $20 ($30 for trucks)
ý 50000
Z

40000

S30000-

20000

S10000-

0*I "

0 10 20 30
Time (years)

Fig 8. Average Annual Dauy Traffic Over a 30-year Period Required to Financially Justify a
Toll Road.
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The significance of identifying the level of traffic required for a break - even
revenue is to determine the difference between traffic forecasts based on
historical trends, and the traffic required to justify, on economic grounds,
investment in new roads. This traffic'shortfall'represents the amount of annual

traffic that would have to beenerated-orinduced by new land-use developments.
In the context of the Queanbeyan - South Coast toll road proposal, these

developments relate primarily to tourism and the attraction of the coast both for
retired people (from Canberra) and for holiday home investment. Also considered
was the relationship between the Very Fast Train (VFT) proposal linking Sydney,

Canberra, and Melbourne (a fesibility study is due for completion in 1991) and its
influence on tourist traffic, especially the role of the tollway as a " feeder service "

to this new railway. the traffic results of these scenarios are beyond the scope of
this paper, but nevertheless they formed an important part of traffic forecasting
methodology that was developed for the client.

CONCLUSIONS

The methodology for economic evaluation and financial appraisal of transport
facilities which aim to attract private-sector funding has been described using two
case studies.The first case study, the$ 400 million Sydney Harbour Tunnel project,
required the development of a methodology thattook standard AADT traffic

projections and separated them into weekday and weekend traffic and then into
traffic by three periods of the day.. The traffic estimation procedure provided the
necessary input to the application of Davidson's travel time/flow model to transform

the traffic projections into level of service measures, such as travel time, fuel
consumption, vehicle operating costs, and frequency of accidents. Standard

economic evaluations (benefit cost ratio, internal rate of return, and net present
value) were performed based on the predicted variations of the above measures

under a number of alternative transport improvement strategies. A flexible micro
- computer program allowed sensitivity analyses to be readily undertaken.

The second case study of a proposed toll road project in rural NewSouthWales
was introduced to demonstrate the application of the logit model to account for
the manner in which road users weight up the costs and benefits in choosing

between alternative routes. The logit model was applied toestimate the potential

traffic share on a toll facility,compared tothe total traffic volume of the corridor,

given assumptions about route lengths, speeds and toll charges.This particular

case study wasalso used to demonstrate the break-even traffic analysis developed

toesLimate the annual level of traffic required over the project life-time to attract
private investment.

This paper has explained the research and development underpinrig major
independent, expert consultancy advice to government and to the plivate sector

by the University of New South Wales R & D Company, Unisearch Ltd. Although
economic evaluation has become standard practice in road project appraisal there
are nevertheless technical issues in the quantification of benefits (and also of
environmental costs that have not been addressed in this paper). Quantification of
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benefits requires accurate traffic estimation because the level of facility use will be
an important factor in total user benefits and in the financial viability of any
project financed on a user-pays principle. In Australia, as direct experience with
tollways is limited, as outlined in Section 2,and our search through the Australian
literature failed to discover any -uitable methodology, it was necessary for the
authors to develop original traffic models as one part of the overall economic and
financial evaluation process, and these has been explained in technical detail inthis
paper. To date no methodological work on the private-sector toll road proposals

in New South Wales has been published, and so this work is presented to stimulate
discussion about the methodology to improve the accuracy of traffic modelling
and forecasting exercises.
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Abstract: The talk gives an introduction into the OpT1X-ll DSS for the modelling and parallel solution of nonlinear
optimization problems which arise especially in the fields of engineering design and production planning. The DSS
supports all steps from the formulation of nonlinear optimization problems to the solution on parallel computers.
Thereby OpTIX-Il provides an engineer / decision maker with the knowledge of an optimization /computer expert in
form of software. In order to reduce the overall computing time and to improve the quality of the solution obtained,
much emphasis has been placed on decomposition principles and nonsequential solution approaches in mathematical
optimization.

1. Introduction

OpTiX-Il is an interactive decision support system for the solution of nonlinear optimization
problems which arise especially in the fields of engineering design and production planning. The
OpTiX-fl software environment supports an engineer / decision maker with the knowledge of an
optimization / computer expert in the form of software. It makes use of modem computer technol-
ogy (e.g. computer networks, parallel computers) for faster and more reliable problem solutions
and supplies an easy-to-use graphical interface for untrained computer users. in order to reduce
the overall computing time and to improve the quality of the solutions obtained, much emphasis
has beea placed on decompositon principles and nonsequential solution approaches in mathemat-
ical optimization. Parallelism in the solution of nonlinear optimization problems can be exploited
at several levels:
(I) First, the application of decomposition techniques and multi-level optimization strategies

leads to 1st level optimization subproblems and a 2nd level coordination problem. These
decomposed optimization problems are solved by primal decomposition methods (feasible
method) or dual decomposition methods (non-feasible method). In both cases, the solution of
the 1st level optimization subproblems is well suited for a coarse grained parallel computa-
tion. Therefore OpTiX-II may distribute these subsystem optimizations onto a network of
heterogenous Unix-workstations or parallel MIMD-type computers.

(II) Secondly, parallel implementations of the classical algorithms based on the Lagrange- or
Kuhn-Tucker theory, make use of fine grained parallelism. This leads to a high communica-
tion effort between the processors involved in the computation. Therefore, it is advisable to
use strongly coupled parallel computers with a high communication bandwidth, e.g. shared
memory multiprocessor-systems. Currently OpTiX-lI supports some parallel implementa-
tions of classical algorithms on shared memory multiprocessor-systems using the Unix oper-
ating system.

(III) In their mathematical description, practical nonlinear optimization problems frequently con-
sist of highly nonlinear objective functions and constraints. In these cases assumptions about
unimodality, convexity, and smoothness of well-known solution methods in nonlinear opti-
mization are mostly invalid. OpTiX-Il allows to apply a simultaneous combination of differ-
ent optimization algorithms to one optimization problem. Thereby, the controlled information
exchange between the participating and parallel-running methods is the basis for a more reli-
able and, in some cases, even faster solution.
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Work with OpTiX-lI consists of three phases: During the problem formulation phase (1), the user
defines the precise mathematical formulation of the optimization problem under analysis (see
Section 2). This formulation is then translated (11) into a machine representation, which is suitable
for parallel processing in heterogenous networks (see Section 3). The third phase, used for the
solution of the optimization problem, is described in Section 4. Within this step (111), the user has
to define a optimization strategy, by. choosing a combination of optimization algorithms, and he
has to start the optimization process.

2. Problem Formulation Phase

This phase is supported by the OpTIX-II Edit-Environment (fig. 1), which is being used for for-
mulating the optimization problem, for controlling the generation of optimization servers for dif-
ferent platforms and for starting the execution environment.
The problem description is entered into a graphically controlled problem editor using the OpTiX-
11 problem description language which resembles the mathematical notation for nonlinear optimi-
zation problems (fig. 2). In many practical situations, complex optimization problems can not be
described by simple mathematical notation. Therefore, OpTiX-Il allows the inclusion of external
functions written in the programming languages C or Fortran (fig. 1). Calls to these functions may
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become a subexpression of an objective function or a constraint. Even commercially available
simulation packages for the solution of complex mathematical models may be included in such a
way. Other language constructs allow the formulation of decomposed optimization problems (fig.
2) so that multi-level optimization strategies may be applied.

3. Problem Translation Phase

This phase is controlled by the -.Compile" and ,,Build executables" menus from the Edit-Environ-
ment. The selection of the ,,Compile" button starts the OpTiX-II problem compi!er, which trans-
lates the problem description into a collection of functions written in the computer language C.
Thereby, the compiler calculates symbolic first and second order derivatives for all objective
functions and constraints. This ensemble of C-functions is then compiled and linked into optimi-
zation servers for different hardware/software platforms (e.g. SPARC/Solaris, MIPS/Ultrix,
Transputer/Helios). These optimization servers are called from within the execution environment
(in phase III). This approach allows parallel optimization in heterogeneous computer networks.

/* gear reducer decomposed */
realvar xl.x2,x3,x4,x5,x6,x7.f,f.12;

problem

subsystem "shaft and bearingsl": subsystem "shafLandbearings_2":

fl = in -! .508"xl*sqr(x6) + 7.477"x6'A3 + 0.7854*x4*sqr(x6); f2 = min -1.508"x I*sqr(x7) + 7.477"x7A3

decisionvar x4dx6; + 0.7854e.5r7^2;
costonsrins decisionvu x -. x7;

/0 g3 "1 t.93/x21x3*x4A3/x6A4 <= I; constramts
1* g5 /sqrt(sqr(745*x4/x2/x3)+16.9E6)10.l/x6A3 <= 1100; /0 g4 */ 1.93/x21x3*xSA3/x7A4 <= 1.
/0 g24 "1 (I.5*x6+I.9)/x4 <= I; / g6 l/sqrt(sqr(745*x5/x21x3)+157.5E6)

bounds /0.1/x7A3 <= 850;
/* gI6,g17 "/7.3 <= x4 <= 8.3; /* g25 */(1.1*x7+1.9)/x5 <= I;
/0 g20.g21 '/2.9 <= x6 <= 3.9; bounds

endsubsystem; P g18.g19 $17.3 <= x5 <= 8.3;

/* g22.g23 /5.0 <= x7 <= 5.5;
endsubsystem.

subsystem "GearReducer_2nd level":

f= min -1.508*xt*sqr(x6) + 7.477*x6A3 + 0.7854*x4*sqT(x6)

-i.508Oxsqr(x7) + 7.477"x7A3 + 0.7854*X5x7A2
+0.7854X1'*sqr(x2)*(3.3333*sqr(x3)+14.9334*x3-.43.0934);

decisionvar xl.x2.x3;
constraints

/P gl * 27/xl/sqr(x2)/x3 <= 1h
/0 g2 0/ 397.5/x1/sqr(x2)/sqnx3) <= I;
/' gV */x2x3 <= 40;
1 g8 */xl/x2 >= 5;
/" g9 /xllx2 <= 12;

bounds
1 glO.gll */2.6 <= xl <= 3.6;
P g12.g13 0/0.7 <= x2 <= 0.8;
/* g14,g15 */17 <= x3 <= 28;

endsubsystem;
endproblem;

Fig. 2: Example of an OpTiX-ll problem description for a decomposed nonlinear optimization
problem ([Azarn90], [Golinski701).
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Curently the problem translation phase generates code for.

(i) Unix workstations from different manufacturers.

(ii) MIMD computers with shared memory:
- multiprocessor Unix workstations/servers, e.g. Sun SPARCstation 10 and 600

series, Sun SPARCcenter 2000 series.

(iii) MIMD computers wiih distributed memory:
- Transputerclusters.
- Workstation networks, regarded as loosely coupled multiprocessor-system.

4. Problem Solution Phase

The OpTUX-II execution environment is used for controlling the ongoing optimization process. It
distributes the computations onto NFS-based heterogeneous computer networks, multiprocessor
workstations and transputer-based parallel computers. Furthermore, the Execution-Environment
records the problem solution process and displays the results. The user interacts with the control
module of the Execution-Environment (fig. 3). This user-interface corresponds to the Open Look
standard and is completely interactive. In the simplest case of a non-decomposed optimization
problem, the user selects an optimization algorithm from the algorithms list, a host for execution
from the hosts panel, the ,.add" option from the ,edit"-menu, and presses the start button. The
optimization results are displayed in the control module window (fig. 3). After each computation,
the user may select another algorithm and continue the optimization by pressing the continue but-
ton. For difficult or decomposed optimization problems, the user has to define a more complicated
strategy script, defining the optimization steps that have to be taken. In each step, the user may
combine the following strategies:
(i) In the case of decomposed optimization problems, all subsystem optimizations can be run in

parallel, reducing the overall computational time effort. The user may choose this strategy by
selecting a 3-tupel (subsystem, algorithm, host for computation) for each subsystem within
the control module (fig. 3).

(ii) The user may apply a parallel optimization method (to a subsystem optimization), if a paral-
lel computer with shared memory is available.

(iii) A simultaneous combination of different optimization algorithms to one optimization (sub)-
system may be applied. In this situation, the controlled information exchange between the
participating and parallel-running methods is the basis for a more reliable and, in some cases,
even faster solution ([Boden9laJ, [Boden9lb]). This approach is similar to hybrid optimiza-
tion methods described in [Burdakov88] and [Kleinmiche192]. Their idea is to define tests for
switching between a globally convergent method I and a locally superlinearly convergent
method II in order to obtain a globally and locally superlinearly convergent method (fig. 4).
The OpTUX-1I user may apply both methods in parallel on different computing nodes. After a
user-definable number of iterations, the best value of both strategies is selected and used as a
basis for further computations.

The basic control unit in OpTUX-II is a block (fig. 5) that consists of a sequence of optimization
steps, each using the strategies described in (i) to (iii). By the use of several blocks, in parallel, the
calculations may be started from different initial points. Thereby, problems resulting from multi-
modality, nondifferentiability, and nonconvexity of the feasible domain may be overcome.
For the solution of decomposable nonlinear optimization problems the user may apply primal
decomposition methods (resource division, principle of interaction prediction, feasible method) or
dual decomposition methods (objective function modification, non-feasible method). In both
cases, the user has to define first and second level (coordination) problems within the problem edi-
tor. He then defines a control strategy consisting of a block with two steps. In the first step, he
selects at least one 2-trpel (algorithm, host for computation) for each first level subsystem. There-
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Linear time algorithms for VLSI routing
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Extended abstract

Consider the gradually more and more complex problems

of single row routing, channel routing and switchbox routing
on the one hand; and the gradually less and less restrictive
models (1-layer, Manhattan, unconstrained 2-layer,

multilayer) on the other hand. The single row routing
problem can always be solved in the Manhattan model, and the
channel routing problem can always be solved in the
unconstrained 2-layer model, in fact, both in linear time.
We show that the switchbox routing problem is solvable, even
in linear time, in the multilayer model.

I.

A switchbox is a rectangular grid G of horizontal

tracks (numbered from 0 to w+l) and vertical columns

(numbered from 0 to h+l), where w and h are the width and

the height of the switchbox. The boundary points of G are

called

- Northern if their coordinates are of form (i, w+l) with

i=1 ,. . .,. h;

- Southern with form (1,0) where i=1,2,....h;

- Eastern with form (h+l,j) where j=1,2,.... ,w; and

- Western with form (0,j) where j=1,2,... ,w.

For example, Figure 1 is a switchbox with width 4 and height
5, where Northern, Southern, Eastern and Western boundary
points are denoted by x's, plus signs, empty and solid dots,
respectively. The "corners" of G will not be considered as
boundary points,

A net is a collection of boundary points. A switchbox

routing problem (SRP) is a set of pairwise disjoint nets. If

every boundary point of every net is Southern, the SRP is
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called single row routing problem, if they are all Southern

or Northern, the SRP is called channel routing problem

(CRP). We shall also use the expression open box routing

problem (OBRP) if there is no Eastern boundary point.

A CRP is called bipartite if every net consists of one

Northern and one Southern boundary point. An SRP is called
4-partite if every net consists of one of each four types of

boundary points. Finally, we call an OBRP 3-partite If

every net consists of one Northern, one Southern and one
Western boundary points (hence no Eastern boundary point is
contained in any net).

The solution of a routing problem in the single layer

model (SLM) is the realization of the nets as pairwise

vertex disjoint subgraphs (usually Steiner trees) of the
planar grid graph G so that each subgraph connects the
boundary points of the net. The edge-disjoint single-layer

model (EDM) is defined in the same way except that the

subgraphs must be pairwise edge disjoint only. For example,
Figure 2 shows the solution of an SRP in the SLM, while the
two SRP's of Figure 3 cannofl'5olved in the SLM, only in the
EDM.

The unconstrained k-layer model (UkM) requires pairwise
vertex disjoint subgraphs of the k-layer grid graph G .k

Edges of these subgraphs joining adjacent points of two
distinct layers are called vias. In case of k=2 vias are

also called via holes but one should not imagine them as
holes if k>3 since situations like that of Figure 4 are also
possible (segmented or stacked vias, see Mueller and

Mlynski, 1988 or Lengauer, 1990, respectively).
The multilayer models may be constrained. If we have

two layers and one of them is restricted to horizontal wire
segments and the other is restricted to vertical ones then
we obtain the Manhattan model (MM). For example, both SRP's

of Figure 3 can be solved in the U2M but only the second one
can be solved in the MM.

Finally let us emphasize that the "corners" of the grid
graph G (or any copy of them in G ) must not be used in the

k

routing. Similarly, the solution of a single row routing
problem must not use Eastern, Western or Southern boundary
points, that of a CRP must not use Eastern and Western ones,

and that of an OBRP must not use Eastern ones.



II.

Every single row routing problem can be solved in the
MM, in fact, in linear time. This observation is probably
due to T. Gallai and it belongs to the engineering folklore
since decades. Similarly, every CRP can be solved in the U2M
(Marek-Sadowska and Kuh, 1983) and even a linear time
algorithm is known (Recski-Strzyzewski, 1990). However, -
while Gallal's algorithm realizes the problem with minimum
width, our algorithm does not, and the computational
complexity of deciding whether a CRP can be solved in the
U2M with a given width seems to be open, see Johnson, 1984
and Recski, 1992 as well.

Hence a natural question arises: can we solve every
OBRP or every SRP in the UkM with a sufficiently large k?
The answer is negative, as shown by the SRP of Figure 5,
essentially due to Hambrusch, 1985. If the pairs of
Identical numbers are the nets then the congestion of the
dotted line is h+n. In case of f layers this clearly means
Ew•-h+w, leading to the lower bound -+I for the number of

w
layers. Thus the number of necessary layers can be
arbitrarily high if we allow very thin or very wide
rectangulars.

However, suppose that the quantity

m = max 1w,h

is fixed (essentially, bounded from above). Let s denote the
number of those sides of the board which contain terminals
at all, i.e. let s=1 for the single row routing problem,
s=2,3 and 4 for the CRP, OBRP and SRP respectively.

Theorem I There is a function -e A (m, s) such that any
0 a

problem characterized with m and s can be solved in linear
time in the UtM for 124

0

In particular, we conjecture f (1,s)=s if s>1. Right

now we can prove the following very special case:
Theorem 2 f (1,s)=s in the s-partite case (s>1).

Details of the proofs and algorithms will be published
in the full paper. Routing examples are shown in Figures 6
and 7 (m=l, s=2 and m=1, s=4, respectively). Wires in the
four layers (in this order) are shown by heavy, thin, broken
and dotted lines, respectively.

IIl.

Our main conjecture, t (1,4)=4 seems to be unrelated to
0
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the result of Brady and Brown (1984). apart from its title
"Four layers suffice" because there the authors show that a
realization of the SRP in the EDM can always be transformed
to the U4M but such an EDM solution need not exist. Since
deciding, whether such a transformation from EDM to U3M is
possible, is known to b- NP-complete (Lipski, 1984), it is
reasonable to conjecture that the problem to decide if an
SRP with h=w can be realized in the U3M, is also
NP-complete.
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A Constructive Method to Improve Lower Bounds for the
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Abstract

We present a new approach to evaluating lower bounds for a class of quadratic
assignment problems (QAP). An instance of a QAP of size n is specified by two n x n
matrices D and F and we denote such an instance by QAP(D, F). Our approach is
applicable to problems where the matrix D is derived as rectilinear distances between
points on a regular grid. We construct two matrices Fo,, and F,., such that F =
F.p, + F,., and the optimal solution to QAP(D, F.,t) is known. Any existing lower
bound can then be applied to QAP(D, F,,.), which in sum with the optimal value for
QAP(D, Fot) provides a valid lower bound to QAP(D, F). This approach results with
improved lower bounds for some QAPs from the literature.

1. Introduction A quadratic assignment problem (QAP) of size n is specified by

two n x n matrices D and F. Denoting by 11 the set of all permutations of {1,2,...,n},

the problem can be defined as mincn C(#) = E=' E'=, dr( ),r(j)fli. QAPs have numerous

applications including facility location, backboard wiring and, scheduling. For a compre-

hensive survey of QAPs the reader is referred to a paper by Finke et al. [1]. In the context

of facility location, the matrix D is thought of as the matrix of distances between locations,

and the matrix F is thought of as the matrix of flow or interaction between facilities.

Two of the main existing lower bounds for the QAP are Gilmore-Lawlor bounds (GLB) [2,4)

and eigenvalue bounds [3, 8]. We propose a novel approach to the problem of computing

lower bounds for QAPs. Our approach is applicable to QAPs whose matrix D is composed

as rectilinear distances between points on a regular grid. All of Nugent's problems [6] of

sizes between 5 and 30, one problem of size 36 due to Steinberg [11] and problems of sizes

between 42 and 100 due to Skorin-lapov (10, 9] fall under this category.

Our approach for calculating lower bounds for the QAP starts with an initial identification

"*Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony
Brook, NY 11794 email: chakrapaOams.sunsyb.edu

t Harriman School for Management and Policy, State University of New York at Stony Brook, Stony
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of oP and ,•' such that F = Opt + Fes and the optimal solution to is known.

Transformations preserving optimal permutation are then applied to F I to obtain Fo,

and F..e such that F = Fopt + F,. One of the transformations we use is similar to the

one proposed by Palubetskes 171 to generate QAPs with rectilinear distance matrix and

known optimal solution. For a QAP specified by matrices A and B, define by opt(A,B)

(resp., by Ib(A, B)) the minimal objective function value (resp., the lower bound on the op-

timal objective function value). Clearly then, opt(D, F) >= opt(D, Fo.Pt) opt(D, Fr..) >=

opt(D,F0 p,) + lb(D,F,,e), and the last expression is a valid lower bound for the initial

QAP. Any of the existing bounds from the literature can be applied to obtain Ib(D, F7 .. ),

and therefore our method could serve as a preprocessing step to possibly tighten existing

bounds. We formulate the construction of Fo,1 and Fe, as a linear programming problem

which we refer to in the sequel as LPLB. The sequel also states our results without proofs

for the sake of brevity.

2. Constraints of LPLB The first sLep to our bounding method is to generate

a QAP instance with known optimal permutation. For convenience we use the identity

permutation irl as the optimal permutation.

QAP with x1 as optimal permutation: Consider a QAP where all the entries of one

of the matrices, say F, equal a constant ý. Denoting by d.,,m = E= ' 7E=, d'i the sum

of all entries of the matrix D, it can be easily shown that for such a class of QAPs every

permutation (including ir) is optimal, and the objective function always evaluates to ýdjm.

Transformations preserving optimal permutation: Let 7rI be the optimal permuta-

tion to a QA?. We present two types of transformations that preserve the optimal permu-

tation when applied to the flow matrix. Both transformations are elementary and the first

is due to Palubetskes 17].
Let the rectilinear distance matrix D be formed from an r x c (n = re) grid of points. Each

location is then specified by its coordinates in the grid. Let i = (ri,cj) and j = (rj,ci) be

two locations I < ri, r3 _ r, 1 < c,,cj < c. Let k = (rk,,ck) be another location. We say

that k is in the path between i and j if rk lies between r, and r , and ck lies between ci

and ci. Note that if k is in the path between i and j, di, = dik + d,•. The main result of

Palubetskes [7] uses this property of rectilinear distances along with the validity of triangle

inequality.
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Definition 1 Let a be a positive scalar. V m >_ 1, AŽ(ikik 2 ... kmj, a) is an n x n matrix

such that the entries ik1 , k1 k2 , k 2 k 3 , ... , k,,,j equal a, the entry ij equals -a, and the rest

of the entries are 0.

Definition 2 Let a be a positive scalar. A2 (ikj, a) is an n x n matrix such that the entries

ik, kj and ij equal ar, and the rest of the entries are 0.

Lemma 1 (Palubetskes) Let D be the rectilinear distance matrix and let JF be the flow

matrix for which 7rt is optimal. Let i, k1 ,k 2,.. . ,k,,j be m + 2 locations (m > 1) such

that k, is in the path between i and j, and V 2 < I < m kt is in the path between kj_1
and j. Define •i...k_,,j,a = T + AI(iki ... k,,j, a). rt is still optimal for F,.kj@ with

the optimal objective function value unchanged.

Lemma 2 Let D be the rectilinear distance matrix and let F be the flow matrix for which

7r is optimal. Let i,k,j be three locations such that dik = dk4 = 1 (dij = 2). Define

.Fkj,, = F + A2 - Then irt is still optimal for .F2kj,, with an optimal objective function

value of opt(D,_F) + 4a.

Formally we define the transformations as below.

Definition 3 T1(ik, ... k,,nj, a) is the transformation due to the addition of A1 (ikl ... ki .j, a)

to the flow matrix, where the locations i, k1 ,.. . ,km,j satisfy the path criterion of Lemma 1.

Definition 4 T2(ikj, a) is the transformation due to the addition of A2(ikj, a) to the flow

matrix, where the locations i,k,j are such that dik = dkj = 1.

Since the rectilinear distance matrix is symmetric, the flow matrix can be assumed to be

symmetric without loss of generality. The resultant flow matrix after either of the transfor-

mations can be kept symmetric by performing both Tl(iki ... kj, a) and Tl(jk,, ... k, i, o),

or T2(ikj, a) and T2(jki, a) In the first case the optimal objective value is unchanged, and

in the second case it is opt(D,.F) + 8a.

Constraints: We first present constraints for the first type of transformations. Formula-

tion of constraints involves identifying for each location i, the sets M' = {j I j > i and j is

involved in TI(ik...j) for some k) and A' = {k I rk >_ ri and k is involved in Tl(ik...j)

for some j} such that m'i nlA' = 0. Then for each location i, a single source single sink

network flow graph is developed as follows. Node i is the source and each element in the

set M' has a directed edge to a common sink z'. There are directed edges from i to each

element k in the set A'. For each k E Ai directed edges are added from k to each element
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in the set Ak as follows. If ck < ci, add directed edges from k to elements in Ak whose

columns are less than or equal to ck; if ck > ci, add directed edges to elements in Ak whose

columns are greater than or equal to Ck; and if ck = ci, add edges to all elements in Ak.

This process is continued recursively for each element k E A' and terminates upon reaching

either the bottom left node (r,O), or the bottom right node (r,c), or both depending on

whether ck is less than, greater than, or equal to c, respectively. Similarly, graphs are con-

structed for each location i. The result is a set of n - 1 graphs, one for each location (except

the n-th) as the source, and there is no edge between graphs corresponding to different

locations. Consider the intermediate nodes which are neither the source nor the sink. For

these nodes the balance constraints (flow-in equals flow-out) form a set of linear constraints.

A flow from a source to a sink corresponds to a transformation as follows.
Definition 5 Let i be the source and let j C A' be one of the nodes with an edge to the

sink z'. Consider a positive flow of a along the path i - k ...- k,, - j - z'. The

transformation corresponding to the flow is Tl(ik, ... kj, a)

We establish that the performance of the transformations must satisfy the constraints.

Theorem 1 Let S1 be the set of all feasible positive flows satisfying balance constraints,

and let TV be the set of all possible transformations of the first type with the sets A' and

M' defined as above. Every sl E S1 corresponds to some subset of TV and every subset of

T 1 corresponds to some si E Si.

A set of constraints for transformations of the second type can be realized in a similar

fashion.

3. Objective Function of LPLB We design (heuristically) a linear objec-

tive function to, possibly, tighten the Gilmore-Lawlor bounds (GLB). First, the rows and

columns of the matrix F are permuted so that 7ri achieves the best known objective func-

tion value for the QAP. Intuitively, this strategy should bring Fort "closer" to F providing

better bounds.

We start with an initial optimal part F.' where all entries equal a constant • > 0 except

the diagonal which are zeroes. The residual part ,"` is defined so that F = F,'P + P",e •

For the first type of transformations, we set M = {j I j > i and tPii < 0 ) andA' ={k I rk > ri and ,[.iniq
Ares r t  > 0 }. In other words, the transformation 'T1 adds (sub-

tracts) to an entry of ,intt if the corresponding entry in F," is greater (lesser) than zero.
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Similarly, the sets are defined for T2. Note that T2 only adds to entries of Pil. Denote by

X,,, the total amount added to or subtracted from [PO"II., due to all the transformations.

We impose some additional constraints on Xq as follows. Xij 5 -[F,'ie"i]ij if j E M', and

Xij _['] otherwise. These constraints ensure that the transformations do not produce

additional negative entries in the residual part of the flow matrix F.

Recall that 7ri (the optimal permutation for Fore) also achieves the best known objective

function value for F. If ?r, can also be established as an optimal permutation for F,.e, its

optimality for F is proven. Though this may not be possible in all cases, better bounds

may be obtained in general if lb(D,F e.) is close to the value it achieves with 7ft. Let

d,,az = r+c- 2 denote the maximum entry in the distance matrix, and let di, = 1 denote
the minimum entry. If 7rl were optimal for Fnt, in the evaluation of the objective function

each entry [fF.',]iJ would be multiplied by dij. For the unknown optimal permutation let it

be multiplied by some other distance matrix entry dq. The difference in objective function

value due to a single entry ij is [Fi""] (d - Xi, is the max-
imum gain in lower bound due to the entry ij. Similarly if [F0iniqt.~ <0,-,.es J <O (dm,, dij)Xii is

the maximum gain due to entry ij. Our objective function is to maximize El IF1_ UijXij

with the coefficients Ci, being either dij - dmin or dmax - dij, depending on whether [P, "]rii

is greater than or less than zero.

4. Computational Results Computation of a lower bound involves three

phases. In the first phase, an LP is generated depending on the initial optimal part and in

the second phase, the LP is solved. In the third phase, the optimal part is constructed from

the LP solution, its objective function evaluated, and a lower bound from the literature is

applied to the residual part. The first and third phases of the computation were done on a

Sun SPARC Station 1, and for the second phase the IBM 3090 version of LINDO was used.

Recall that prior to generating the LP, the rows and columns of F are permuted (based on

the best known heuristic solution) so that wlr, now, is the best known solution.

The constructive bounding method was tested on a number of problems from the literature

viz., Nugen.'s problems [6] of sizes 5-30, one problem of size 36 due to Steinberg [11] and

problems of size 42 and 49 due to Skorin-Kapov [10]. The initial optimal part was con-

structed by choosing constant entries t such that t = bkv(D,F)/d~,,1 , where bkv(D,F)

denotes the best known value for the QAP. 11!ote that for this optimal part the optimal
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objective value equals the best known value. The LP corresponding to this optimal part is

generated and solved using LINDO. GLB is then applied to F,.e,. We present the results in

Table 1. In the table BIKV refers to the best known value for the QAP (which is optimal

for problems up to NugiS), and CGLB refers to the lower bound for QAP(D,F) obtained

by using GLB to obtain the lower bound for QAP(D,F,.,).

Among the existing lower bounds in the literature. GLB provides the best bounds for Nu-

gent's problems of size up to 8. However, for larger problems GLB does not perform as well

as eigenvalue based bounds. We consider two eigenvalue based bounds from the literature:

MEVB developed by Rendl and Wolkowicz [8], and IVB developed by Hadley et.al. [3].

MEVB provides better results than IVB for Nugent's problems of size up to 30. However,

we do not have resuls from MEVB on problems of size greater than 30.

For problems of size greater than 15, we also performed another set of experiments by

varying the starting entry for the optimal part. Recall from section 4 that if the starting

entry ý is 0, M' = 0 and no transformations of the first type are possible. As ý increases,

M's ]grow in size and A's shrink until Ai = 0 when ý equals the maximum element in the

matrix F. We tried a few values of ý using IVB to compute the bounds for the residual

part. The results are presented in Table 2.

From the tables it can be seen that when our constructive method is used as a preprocess-

ing step, the bounds obtained (CGLBI) are better than GLB for all the problems tested.

Even for larger problems, where the eigenvalue bounds seem to provide better results, con-

struction improves the bounds. Table 2 shows in bold the best bounds (CIVB) obtained

by constructing Fopi and evaluating IVB(D,Fr..). CIVB obtains better results than both

MEVB, where applicable, and IVB for all the test problems.

Eigenvalue bounds seem to improve if the spectral radii of the matrices D and F are

small [8]. Though there is no closed form equation to evaluate the spectral radius sp(A)

of a matrix A, it obeys the following inequality due to Mirsky [5] sp(A) :_ m(A) =

[2 Ei Ej ai - 2(tr A)2] 2, where trA denotes the trace of the matrix A. Performing trans-

formations to minimize rn(Ftes) can be posed directly as a quadratic programming problem

with a convex objective function. Table 2 provides results with a linear objective function,

and we suspect that a quadratic objective might improve results even further.
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Table 1: Constructive GLB
Problem BKV MEVB(D,F) GLB(D,F) OPT(D,F,,,) GLB(D,F,.,) CGLB(D,F)
Nug6 86 70 82 92.161 -9.604 84
Nug8 214 174 186 248.115 -42.112 206
Nugl2 578 495 493 618.792 -92.682 528
Nugl5 1150 989 963 1191.525 -149.254 1044
Nug20 2570 2229 2057 2687.272 -466.954 2222
Nug30 6124 5349 4539 6194.461 -974.015 5222
Ste36 9526 NA 7124 10795.224 -3316.368 7480
Sko42 15812 NA 11311 15836.092 -2698.571 13138

Table 2: Constructive IVB
Problem N MEVB(D, F) IVB(D,F) OPT(D, F0 ,,) IVB(D, Fr.e) CIVB(D, F)
Nug20 3 2229 2196 3480 -1275.052 2206

4 4562 -2314.134 2248
5 5700 -3457.714 2244

Nug30 3 5349 5265 9595 -4244.326 5352
4 12778 -7402.730 5376
5 15998 -10631.381 5368

Sko42 5 NA 13830 37350 -23241.681 14110
6 44772 -30654.461 14118
7 52234 -38152.217 14082

Sko49 6 NA 20716 65858 -45018.698 20840
7 76838 -55974.705 20864
8 87808 -67007.763 20802

5. Conclusions We h\ave proposed a new construction based approach to obtain-

ing lower bounds for the QAP. Our approach is based on performing optimality preserving

transformations to decompose the QAP into two problems: one for which an optimal solu-

tion is known, and another to which any existing lower bound can be applied. This provides

a lower bound to the original QAP. Among existing lower bounds we considered GLB and

IVB in our study.

We provide a set of linear constraints to perform the transformations. A linear programming

problem LPLB is formulated and solved to complete the construction. We have improved

both GLB and IVB for all the problems tested. We conjecture that IVB may be improved

directly by formulating a quadratic objective function, and solving the resulting optimiza-

tion problem.

Though our method is developed for QAPs with rectilinear distance matrix, it can be ex-

tended to QAPs with distance matrices satisfying triangle inequality. Since our method

constructs Fopt with known optimal solution such that F = F0 p, + F,.,, it has applications

to sensitivity analysis and may also be useful in branch and bound techniques.
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The major difficulty in mathematical programming is no longer

the solution of large models, it is the correct formulation (or re-

formulation) of the model. Large models are now solved routinely,

but their very size complicates the determination of how to make

repairs when the model is infeasible or otherwise nonfunctional.

One useful approach is to localize or isolate the problem to a

smaller portion of the whole model. This paper presents methods

and case studies in the analysis of infeasible mathematical

programs by isolating an Irreducibly Inconsistent Set (IIS) of

constraints.

An IIS is a set of constraints which is infeasible, but which

becomes feasible if any one member is removed. The IIS may consist

of only a few constraints when the total constraint set is very

large. The diagnosis of the problem in human-understandable terms

often follows directly from examination of the IIS. At worst,
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other algorithms or expert systems or humans need only operate on

the IIS, typically a much reduced portion of the entire model, to

arrive at a final diagnosis. This improves the overall efficiency

of the diagnosis and repair-process.

The paper presents the basic algorithms for IIS isolation for

both linear and nonlinear programs, and their implementation in a

modified version of MINOS 5.3, known as MINOS(IIS), developed at

Carleton University. The algorithms are effective and quick in the

linear case. The time to find the IIS is often a small fraction of

the time to make the initial determination that the LP is

infeasible.

A specialized procedure for networks, which incorporates the

concept of nonviability analysis, is also presented. Nonviability

is a structural property of a network which a priori forces some of

the arc flows to zero, before the addition of flow bounds or extra

side constraints. An ordered set of tests of an infeasible

network, including nonviability and IIS analysis, provides an

improved diagnosis. Unlike flow-balancing methods, the specialized

procedure is applicable to advanced netforms such as processing

networks.

The analysis of infeasible nonlinear programs is complicated

by the inability of nonlinear optimizers to determine the

feasibility of a nonlinear constraint set with 100% accuracy.

However, useful information can still be extracted which can help

in selecting a new initial point for the optimizer.

Case studies of analyses of infeasible linear programs,

networks, and nonlinear programs are presented.
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1. INTRODUCTION

In this paper, we investigate the facial structure of the polytope whose extreme poizr,-
are exactly the mxp 0-1 block diagonal matrices (m, p r N). More precisely, we define a
matrix X to be block diagonal if there exists a partition R,, ... , Rt, Rt., of its row-set and
a partition C,, .... Ct, q., of its column-set such that xj # 0 if and only if i E R1 and j e
Cq for some 1 < 1 < k (notice that what we really mean is that X is block diagonal up to
permutations of its rows and columns). We let

Smp = { X c (0,1}'P I X is block diagonal 1,

and we denote by Q.P the convex hull of SmP* The goal of this paper is to provide a (parti-
al) description of the polytope Q.p by linear inequalities.

As explained in Crama and Oosten (1992), our interest for the polytope QP mainly
stems from its relation to the cell formation problem encountered in cellular manufactu-
ring. The data for this problem are generally assumed to be summarized in the machine-
part incidence matrix A, where aj = 1 if part j needs to be processed on machine i, and aj
= 0 otherwise. Recall that a group technology cell consists of a number of machines (a
machine-group) geared on the manufacturing of a number of similar parts (a part-family).
The cell formation problem asks for a partition of the machines into machine-groups, a
partition of the parts into part-families, and a matching between the machine-groups and
the part-families which optimizes some measure of the inter- and intra-cell relationships. It
can be abstracted into the following block diagonalization problem: given an mxp
incidence matrix A and a function f(.,.), find an mxp block diagonal incidence matrix X
which minimizes f(A,X) (the function f(.,.) gives an estimate of the distance, or dissimila-
rity, between the original incidence matrix A and the 'ideal' cellularized system repre-
sented by X). In Crama and Oosten (1992), we showed that, for many of the objective
functions f(.,.) proposed in the literature, the cell formation problem can be reduced to the
problem of minimizing a linear function of the variables x1q (i = 1, ..., m; j = 1 .... p) over
the polytope Q., Similar block diagonalization problems also arise in the analysis of large
data arrays (e.g. for marketing or archeology applications), in production planning for
flexible manufacturing systems, in sparse matrix computations, etc (see Crama and Oosten
1992 for references).

In our presentation, we will often rely on a graph-theoretic interpretation of block
diagonal matrices and of the polytope Qp. We follow the graph-theoretic terminology of
Bondy and Murty (1976). Moreover, when B = (U,VE) is a bipartite graph and G =
(U,V,F) is a subgraph of B, we say that G is a complete bipartite partitioning of B if all
connected components of G are complete bipartite (we look at isolated vertices as
complete bipartite graphs). In particular, consider the complete bipartite graph Kp = (U.,
V,,U~xV.), where U. = (u,,....u,) and Vp = {v,,...,v). We regard an arbitrary mxp 0-1
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matrix X as the adjacency matrix of a subgraph G of KI, say G = (U.,VPF), where (ut,vj)
e F if and only if x,, = 1. It is easy to see that the matrix X is block diagonal if and only
if its associated graph is a complete bipartite partitioning of Kfr

This graph-theoretic interpretation stresses the analogy of the polytope Q• with the
clique partitioning polytope P, investigated by Faigle, Schrader and Suletzki (1986) and
Gr(tschel and Wakabayashi (1989), and with the related multiway cut polytope studied by
Chopra and Rao (1991). In fact, QP can be viewed as the projection of P., on some
appropriate subspace. But this observation does not seem very useful in deriving a
description of Q, from the results available about P..

In Section 2, some general properties of facet-defining inequalities for the polytope Q(,
are stated. In Section 3 specific families of facet-inducing inequalities are described.
Section 4 contains some lifting theorems. Finally, in Section 5, a technique is presented to
patch facet-defining inequalities into new valid inequalities which, under certain conditi-
ons, also define facets.

2. PROPERTIES OF FACET-DEFINING INEQUALITIES

We describe in this section some general properties of facet-defining inequalities for the
polytope Q, : two 'lifting' results, relating facets of lower-dimensional polytopes to facets
of higher-dimensional ones, and one proposition describing the 'graphical' structure of
facet-defining inequalities.

In our discussion, it will be often convenient to consider the polytope associated with
block diagonal submatrices of a given matrix, or equivalently, with complete bipartite
partitionings of a given graph. To define these concepts more accurately, let B = (U., Vp,
E(B)) be an arbitrary bipartite graph, where, as before, U. = [u,,...,u..) and Vp =
(v,,...,v,). The set of incidence matrices of complete bipartite partitionings of B is denoted
by SB, and the convex hull of S. is denoted by Q(. Clearly, if B = K.,, then SB = S., and
QB = Q,. In fact, the polyhedronQ 3 can be viewed in the space RP as the face of Qp
with the property that, for all X (3, xij = 0 when (ij) e E(B).

The dimension of %, is IE(B) 1, since the subgraph of B containing no edges at all, as
well as any subgraph containing only one edge of B, are complete bipartite partitionings of
B. By the same reasoning, the trivial inequalities x. Z 0 and x. : 1 are facet-defining for
QB, for all e e E(B).

Suppose now that B, and B2 are two bipartite graphs on the same vertex-set, and
differing only in one edge (ui,vj), for example E( B2 ) = E ( BI) u ((u,,vj)). Our first result
follows directly from the sequential lifting procedure described in Nemhauser and Wolsey
(1988), combined with the observation that QB, is a facet of Q82 :

Proposition 1. Consider the valid inequality I X < 7 and assume that it defines a facet
of Q(3. Then, the inequality fl X + nj x,, - no defines a facet of Qs2 iff

nij = N - max ( H X I X e S 2 and xQ=l).

This proposition guarantees that, when a facet-defining inequality is derived for a
'partial' polyhedron Q(, this inequality can always be lifted to a facet-defining inequality
of Q-. The following proposition shows that an inequality defining a facet of Q., is also
facet-defining for each of the polyhedra corresponding to block diagonal matrices with at
least m rows and p columns. It is similar in spirit to Theorem 3.3 in Grdtschel and
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Wakabayashi (1990), Theorem 3.2 in Chopra and Rao (1991) and Theorem 2.2 in Deza
and Laurent (1992).

Proposition 2. Assume that the inequality H1 X < no defines a facet of Q(, and let a,b e
N Then the inequality r Y : -N defines a facet of Q , where r e R",'•, =x for
i5m and j5p, and 1̂ = 0 otherwise.

Consider the inequality H1 X < N and assume that it defines a nontrivial facet of QB.
Without any information about the numerical values of the coefficients (rH,2r), some
general structural properties of the inequality can be stated. To do this, associate with the
inequality two edge-sets E and E, defined as follows:

E := ( (u,,vj) I (ui,v)e B and i;, 0), E÷ := ((%,v) I (u,,vj)e B and i;j > 0).

We call the graph H := (V(E), E ) (respectively W := (V(E÷), E' )) the support (respecti-
vely the positive support) of the inequality H' X < no.

Proposition 3. If B is a nonempty bipartite graph, and H1 X . no induces a facet of Qa,
then: (1) no>0;

(2) E' is nonempty;
(3) the support H of 1' X 5 r. is connected;
(4) the positive support H of IT X5 r. is connected;
(5) V(E) = V(E4).

If moreover B is a complete bipartite graph, then:
(6) E\Er is nonempty, i.e. 1" has negative elements;
(7) the support H of IT X:9 no is two-connected.

3. FACET-DEFINING INEQUALITIES

We present in this section various classes of facet-defining inequalities for Q4. These
inequalities will be obtained by lifting facet-defining inequalities for a face %, of Qp
(according to Proposition 1). Some of the subgraphs B which we will consider anm
'squares' (i.e. C4's), so-called 'spiked' C4-free connected bipartite graphs and cycles.

For a given X e (0,1)•P and a given subgraph B of KY,. we use the shorthand x(B) to
denote the sum Z( xN I (u,,vj) e E(B)).

3.L Square inequalities

Crarna and Oosten (1992) observed that the square inequalities:

xbj+ )6k+ xtj- xik<2 (hjie( {,.m}j~k e{1,...,p}))

are valid for S.,, (hence, for its convex hull Q..), and that they yield, together with the
integrality constraints on X, a valid description of S.,; that is,

S.,= Xe (0,1)}P + xa+ x,-+x.5-x.<2 forallh,i e {,...,i} andj,ke (1,..,p) }.
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In fact, it is easy to see that the square inequalities are facet-defining for Q22, and hence
we deduce from Proposition 2 that they are facet-defining for Q.= for all m,p > 2.

3.2. Facet-defining inequalities based on spiked C4-free connected bipartite graphs

The term 'spike' refers to special edges of the positive support H÷ of a valid inequality,
say 11 X < x., or to the corresponding coefficients of 1. A spike-leaf of HW, or of 1' X <
ro, is a vertex covered by exactly one edge of the subgraph W. That covering edge is
called a spike. A spike-root is a vertex covered by a spike, but not a spike-leaf itself. For
example the square inequality xj + x. + xj - x. < 2 has two spike leaves (vertices uA and
vJ), two spikes (the edges (uh,vk) and (u1,v)) and two spike roots (vertices Uh and vj).

Notice that there are facet-defining inequalities whose support consists of exactly one
spike, namely the trivial inequalities x1j < 1. It follows from Proposition 3(3) in Propositi-
on 3 that nontrivial facet-defining inequalities never contain spikes covering two spike-
leaves.

We say that a graph B is spiked if each vertex of B is covered by exactly one spike. We
say that B is a U,-free graph if it does not containany cycles of length four (i.e., C,'s).
The following holds:

Proposition 4. For k r N, if B is a spiked C4-free connected bipartite graph with exactly k
spikes, then the inequality x(B) < k defines a facet of Q8.

In view of Propositions 1 and 2, the inequality x(B) 5 k defined in Proposition 4 can be
lifted to a family of facet-defining inequalities of Q., for all mp > k. A subset of this
family can be described explicitly. To achieve this, a new definition is needed: a subset C
of (U.,xVp)\E(B) is called a chord set for a spiked tree B if, for each path between two
spike-leaves of B, there is an edge in C linking two (arbitrary) vertices of the path. The
following proposition holds:

Proposition 5. For k e N and m,p > k, if B is a spiked tree with exactly k spikes and C is
a minimal chord set for B, then the inequality x(B) - x(C) < k defines a facet of Q•.

To get better acquainted with these spiked tree inequalities, consider for instance the
special case in which the spike-roots u2, u3 ..... u; of the spiked tree B are all adjacent to
the spike-root v,, as shown in Figure I below. A minimal chord set C for this tree must
consist of the following edges : for all ij > 2, (u,,vj), and either (uj,vj) or (u1,vr). Carrying
out this construction with k = 1 or k = 2 demonstrates that the trivial inequalities x)j < 1
and the square inequalities belong to the family of spiked tree inequalities.

Another subset of the family of facet-defining inequalities based on C4-free connected
bipartite graphs can also be described explicitly as follows. Let a spiked cycle be a spiked
graph whose spike roots induce a cycle (notice that this is a slight abuse of our general
definition of a spiked graph, since a spiked cycle is not a cycle; but this abuse is conve-
nient, and will not cause any confusion). A subset C of (UxVp)\E(B) is a chord set for
the spiked cycle B if, for each pair (s,t) of spike-leaves of B, and for each of the two
paths P, (i=1-,2) between s and t, there is an edge e(s,t,P1) e C such that
(a) e(s,t,P1) links two (arbitrary) vertices of P, (i=1,2);
(b) e(s,tP) and e(s,tP 2) are distinct;
(c) if one of to the leaves s and t is covered by both edges e(s,tP,) and e(s,tP2), then one
of these edges covers s and t.
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V2 V3  ..... Vk

U U3... Figure 1. A spiked tree.

VI1

U,

Proposition 6. For all m,p > k 2 6, if B is a spiked cycle with exactly k spikes and C is a

minimal chord set for B, then the inequality x(B) - x(C) < k defines a facet of Q,,.

The smallest example of a C,-free spiked cycle is shown in Figure 2. Call this graph B,.

U2  V3

V2  U3

VI , V4

V6 US

Figure 2. A spiked cycle with 6 spikes.

UG VS

It is easy to see that all of the edges (u2,v1), (u2,v 3), (u4,v 3), (u4,vs), (u4,vs) and (u.,v1 )
must be in any chord set for B,, but on the other hand, there exist various ways to
complete this list to a minimal chord set. As a matter of fact, it can be checked that each
of the matrices I', r? and IF hereunder gives rise to a facet-defining inequality of the
form [ X < 6, derived from B* as explained in Proposition 6:
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11 0 0-1 1 1 1-1-1 0 1 1 1-1-1-1 1
-1 1-1-1 0 -1 1-1-1 0 0 -1 1-1-1 0-1
-1 1 1 1 0 0 0 1 1 1-1-1 0 1 1 1 0 0

IT, 0 0- I-I-1 n'2= 0 0-_I I-_I-_I I' _I 00-I _-I 0
0 0-1 1 1 11 - 0 1 1-1 W 0 0-1 1 1 1
-1-1 0 0-1 1 - 1- 1 0 0-1 1 -1 0 0-1-1 1

The question arises wether it is possible to describe explicitly other, possibly more
general, subfamilies of facet-defining inequalities based on C4-free connected bipartite
graphs. In Section 5, we present a patching procedure which partially answer this question.

Some interesting variants of the spiked tree and spiked cycle inequalities can be gene-
rated by adding a single special vertex to B. This yields facet-defining inequalities whose
positive support is not spiked. Details are omitted from this extended abstract.

Let us finally observe that the incidence graphs of projective planes are very special
(non-spiked) C,-free connected bipartite graphs, which also give rise to interesting valid
inequalities for Q-. Details are again omitted.

3.3. Facet-defining inequalities based on cycles

Let Cq be a cycle of length k, with k even. If k 2 6, then no component of a complete
bipartite partitioning of Cq can contain more than two edges. Therefore, the total number
of edges of a complete bipartite partitioning of Cq cannot exceed % k. If k is not a
multiple of three, then the inequality x(C-) :s L% kJ is facet-defining for Qo3.

Define now 3Cq to be the graph induced by the three-chords of Cq (a three-chord of Cq is
an edge joining two vertices at distance 3 in C). Then the following holds:

Proposition 7. For all k > 4 and all m, p with k < 2mintm,p), the inequality
x(C. - x(3Cq) 5 L% kJ is valid for QP. If k = I (mod3), then the inequality induces a
facet of Qp.

4. LIFTING THEOREMS

Let v, e Vp. The covering cn(vi) (also denoted as c(v,), when no confusion can arise) of
a vertex vj with respect to the valid inequality l X < • for Q. is defined as follows:

cn(vj) := ; - max ( n x I X E S.., and xi. = 0 for all i = , 2, ... , m ).

(A similar definition would of course apply to any vertex Ui E U.). The covering of an
arbitrary vertex is always nonnegative. The covering of vj is zero if nij = 0 for all i = 1, 2,
..., m, i.e. if vj is not covered by any edge in the support of the inequality.

A tight inequality is a valid inequality for Qp with the property that there exists a
complete bipartite partitioning X satisfying the inequality with equality, and such that all
vertices having a strictly positive covering with respect to the inequality are in the same
connected component of X (it can be checked that all square inequalities are tight).

Finally, call U-extension of K,, the graph B obtained from K1. by adding a vertex u,,
to U,, a vertex vp, to Vp, and all the edges between u,,, and Vput(v+,}; that is,
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B (u.u~uL 1), Vpu(v,.,), (U.xV,)({u.,jxVi)U(u.,,v,.,)).

The following statement describes how a tight facet-defining inequality for Q.,, can be
lifted to a facet-defining inequality for Qs:

Proposition 8. Let " X < ic be alight facet-defining inequality for Q.,•. Let the inequality
r Y • 70 be constructed in the following way:

I[ if (ut,vJ) E U.xVP;

cv= lcnv) ifi = m+1 and v, e Vp;

41, Cn(Vk0 if i = m+l and j = p+l;
P

To = N + €i., Cn( vk).

Then the inequality r Y < yo defines a facet of Q%, where B is the U-extension of KI.

Proposition 8, together with Propositions 1 and 2, implies that the inequality r Y <_ y0
can in turn be lifted to a family of facet-defining inequalities for Q, (n ;> m, q > p). A
special subset of such inequalities, which we call 'totally spiked tight inequalities', can be
described explicitly. A totally spiked inequality is an inequality [I X < w. whose support is
spiked, and such that the spiked soluion S, defined by s4 = 1 if and only if (ut,vj} is a
spike, satisfies H S = itr. A simple example of totally spiked inequality is again provided
by any square inequality, or by any of the facet-defining inequalities described in Section
3.2. Now, our next proposition allows to lift totally spiked, tight, facet-defining inequali-
ties for Q(4 to totally spiked, tight, facet-defining inequalities for Q..., (of course, a simi-
lar result holds for Q. 4.,,). When stating this result, we assume that the spikes, the spike-
roots and the spike-leaves of the inequality are numbered in such a way that spike-root i
and spike-leaf i are covered by spike i.

Proposition 9. Let H X < a be a totally spiked tight inequality defining a facet of Q-4,
Let yo and y,, be defined as in Proposition 8 for all edges (u,,vj) of the U-extension of K.,,
and let y,, = - 1 .j,1 m [ n, ]+ if ut e U. and j = p+l. Then, the inequality r Y < •ois a
totally spiked tight inequality defining a facet of Q ..

5. PATCHING FACET-DEFINING INEQUALITIES

Sometimes, families of valid inequalities, or even facet-defining inequalities, can be
constructed by combining together a number of other valid inequalities. This section
presents such a patching procedure. For simplicity, we assume that only two valid
inequalities for Q,, are to be combined, say AX < a0 and BX < bo. We denote by A and
B, respectively, the vertex-sets of the supports of these two inequalities; A and B are
assumed to be disjoinL We define the neighborhood of a vertex i with respect to A to be
the set NA(i) : j > > 0 ) (similarly for B). Notice that a vertex is not in its own
neighborhood.

Now the patching procedure can be roughly sketched as follows. It makes use of the
concept of covering introduced in Section 4. First, vertices having a strictly positive
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covering with respect to AX < a are selected in A, in such a way that their neighborhoods
with respect to A are disjoint; an equal number of vertices are selected in B in a similar
way. Then, the selected vertices from A and B are matched. The graph K. for which a
valid inequality I Y < yo will be derived, is the complete bipartite graph induced by the
union of the vertex-sets A and B. Construct now the coefficients of the inequality r Y <
y0 as follows:

aj ifutE A and vj e A,
bii if u1 e B and vj e B,

rmin { cB(ui), cA(vj)) if (uivj) is a matched pair, u. c B and vj e A

i= min cA(u), cB(v1)} if (u,,vj) is a matched pair, ui e A and vj e B,
- Ykh if (tu,v,) is a matched pair, ui e NA(uh) and vj e NB(vk),

or uj e NB(ub) and vj r NA(vk),
0 otherwise,

co = ao + bo.

Proposition 10. The inequality r Y < yo is a valid inequality for Qp.

Proposition 11. If AX < ao and BX < bo are valid inequalities for Q-p which have been
obtained by patching together a number of spiked tree and spiked cycle inequalities, then
the inequality r Y 5 y0 obtained by patching AX < a4 and BX < bo as explained above is
facet-defining for Q.P
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1. INTRODUCTION

For more than a decade already, modeling, methodological research and software

development for stand-alone decision support systems have belonged to the scope of

our department. Both on mainframes and PC's, we have had several joint project

with the Hungarian Electricity Board on electrical energy optimization problems,

projects on inventory and production control have been carried out in the steel

industry, smaller special applications, for example menu planning for hospitals, op-

timal design of trusses for a bus manufacturing company must also be mentioned

among the succesful applications.

In our department, research and software development on group decision support

began in 1989 only, by a small team [1]. The reason for the increasing interest

for such systems is quit simple: in today's organizations decisions are made mostly

collectively. As managers spend more of their time in meetings, the study of infor-

mation technology to support meetings becomes increasingly important.

Several type of group support systems have been developed by the Group Sup-

port Systems research community, varying from collaborate writing to computer

supported negotiation and decision making. A Group Support System can support

meetings, which are distributed geographically and temporally. Tasks in a group

decision situation include communication, planning, idea generation, problem analy-

sis and design, problem solving, negotiation, conflict resolution, collaborative docu-

ment preparation. Group support systems should provide the sharing of information

among group members and between the group and computer. Decision makers may

'Research supported in part by the Hungarian Foundation for Scientific Research, grant No.2568
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get individually all the necessary information they need, and, in some extent, they

can carry out their task-dependent decision process also individually. The group

support system should help in defining and formalizing the decision problem for the

group. The system should provide the necessary data, tools and methods for solving

the specific decision task individually. Last but not least, the system should help to

achive the result satisfactory for all group members.

The basic concept for us has been to develope a rather flexible framework, which

- has an attractive user interface,

- is adjustable to different type of group decision situation,

- is able to integrate the knowledge and experiences, accumulated over the last

decade in our department on stand-alone decision support system design and devel-

opment.

Within three years, a PC based system working in the MS WINDOWS envi-

ronment has been realized. At present, we are like conducting a mission with our

WINGDSS system in the really difficult process of convincing people to use com-

puters for supporting their group decision problems, but the real life applications of

WINGDSS should convince its possible users about its higher efficiency.

WINGDSS has already been proved very helpful in evaluating bids for tenders.

for example at the Tender Bureau of the Hungarian Telecommunication Company.

We developed a model for appraisal of hotels for the State Property Agency. At

the Ministry of Welfare, the purpose of the usage of WINGDSS is to support bud-

get allocation processes for social institutions. We are working on extending the

applicability of our system for more complex problems, for example in environmen-

tal impact analysis problems. Our experiences collected with real life applications

define new directions for further developments in WINGDSS.

2. WHAT KIND OF GROUP DECISION PROCESSES

ARE SUPPORTED BY WINGDSS ?

The decision problem can be typifed as follows:

A group of experts from different fields but with a common interest has the task of

ranking certain alternatives characterized by a finite set of properties or attributes.

Attributes can be factual data and subjective factors. Applying a proper utility

function to the set of alternatives leads to a ranking of the alternatives accord-

ing to their numerical values. The individual ranking will reflect the individual
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preferences, group ranking, in addition, will incorporate the differences of priorities

and the expertise of decision makers. The arrival to a group ranking satisfactory

to all members is supported by a series of possibilities for the interactive usage of

WINGDSS. The system provides userfriendly tools for a lot of operations that can

be carried out in the decision process during program execution, on-screen, by the

users themselves. Practically, feedbacks from the individuals can be integrated at

any stage of the decision process. The system is always ready for updates.

In the past, stand-alone PC-s were more frequently used in Hungary than LANs

and workstations, this is why the present version works on a single PC. In spite

of that, the system provides the athmosphere of a decision room with networked

computers: task formulation, idea generation, and team building is supported in

many ways, but at the same time, the individuals' privacy is ensured as well.

The group decision process is concerned as a three-phase event:

- the preparation of the decision task,

- the process of individual evaluation,

- the phase of aggregation (group result processing).

This concept defined three main menu groups for a virtual separation of the

activities, however, they do not describe the sequence of actions obligatory: moving

back and forth among the different phases is possible at any stage.

2.1 Task preparation phase

The key problem is transforming the actual decision task into an appropriate form.

Idea organization is one of the main issues in a decision process. The hierarchy of

criteria is a tree in our wingdss: one starts with the most general criterion, which

corresponds to the root of the tree, and gradually decomposes it to more specific

criteria. The leaves represent the criteria, which can be evaluated independently

from each other. Some decision problems can be represented with a tree of several

levels, while others are less decomposable. In the earlier versions of WINGDSS,

variables defined at one leaf criterion were not reachable at the other leaves. The

third version eliminated this drawback by separating the definition and storing of

the variables from the definition and storing of the tree-components.

Creating and modifying the criterion tree with on screen operations is technically

possible due to a modul, which is applicable to graph handling tasks separately

from the WINGDSS system as well: nodes and subtrees can be constructed, moved,
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copied, deleted, renamed and arranged in several ways.

The data of alternatives can be typed in directly or they can also be selected from

an outer database. Any database handling system, running under MS Windows, can

be fitted to WINGDSS. A methodology for selecting records from the outer database

can also be defined from the WINGDSS, providing a screening on the alternatives.

The evaluation of the alternatives starts at the leaf criteria, with functions defined

exlusively to the actual decision task. Finding the appropriate functions and / or

procedures is also a key problem in decision support. Thanks to an interpreter built

into the WINGDSS, the functions can also be created or modified on screen by any

authorized individual. The system offers a collection of ready made funt'tions as

well. Version 3.0 has already the capability of integrating program solvers.

Once the problem has been set up in the necessary form, the next steps are,

- for each decision maker (DM), to assign weights to each criteria reflecting their

importance,

- to assign weights - voting powers to each DM at each criteria, expressing the

DM's competency in evaluating the criteria.

We assume the presence of a system facilitator or supervisor, who, with on screen

operations, composes the decision group, determines the individuals' authorities,

and assigns the voting powers. The authorities include the right to construct and

modify the decision task (criteria, alternatives, evaluation procedures), the right for

participating in the individual and in the group decision process.

2.2 Individual decision phase

Criteria are factual or subjective data. The functions or procedures defined at the

leaf criteria must be identical for all group members, but the values of these func-

tions are equal on factual data only. The result of the decision makers' individual

evaluation will still vary due to the diversity of preferences. The weights expressing

the preferences of a DM should be given explicitly, but we plan to integrate methods

for this process. The function values on the subjective criteria are very likely de-

pendent on the experts' opinion, and the individual preferences will modulate these

differences further. The final score of an alternative during the individual decision

process will be calculated as the weighted average of the function values, starting

at the leaf criteria, combining them with the weights, and then proceeding toward

the root of the criteria tree. The mathematical formulation is relativly simple:
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Consider a decision problem with 1 group members D1 ... DI, n alternatives

A, ... An and m criteria C1 ... Cm. .

Denote the result of the individual evaluation of decision maker Dk for alternative

Aj on each leaf criterion Ci by- aiJ3 . Assume that the problem arising from the

differences in dimension of the attributes has already been settled.

Let wt > 0 weight assigned by Dk to Ci, i = 1 ... m at each branching of the

tree.

The calculation starts at each simple subtree (denoted by N') consisting from leaf

criteria and their father, by the formula

S, w k~kk /--iEN' 1 11)

E iEN' j1)i

The j value is assigned to the root of this simple subtree. The calculation

proceeds toward the root of the criterion tree with combining the weights on the

higher level criteria with values resulted from one level below. The individual utility

given by Dk for Aj will be assigned to the root.

Note that an additive multiattribute model is only applicable to the decision

problems when the additive independence of the criteria can be proved [4], [5].

2.3 Group ranking phase

For objective attributes only the weights given by a decision maker will be revised

(at each criterion) by the voting power for weighing. However, in case of subjective

attributes, not only the weights but also the evaluation itself (the aj1 values) will

be modified at the corresponding leaf criteria by the voting power for qualifying,

where

V(w)ý is the voting power assigned for DL for the DM's weighing on a criterion

Ci, and

V(q)ý is the voting power assigned for Dk for the DM's qualifying on a subjective

leaf criterion Ci.

Now the method of calculating the group utility of the alternative Aj is carried out

on the tree of criteria, basically in the same way as it has been done by calculating

the individual utilities.

First we aggregate the weights at each node i and get the group weights:



107

w I i -= 1...m. (2)

Then we compute the aggregated qualification at each leaf criterion Ci and get

the group qualification at the leave;& for each alternative A,:

VQq), =.,I i E N1, j n .,. (3)
E= V(q).

The group utility of Aj is the result of the linear combination of the aggregated

qualification values with the aggregated weights (proceeding from the leaf level to-

ward the root):

Uj -Wi j=1...n (4)

A correct group utility function must satisfy the axioms given in [6]. The function

(4) appearently used in WINGDSS is appropriate in this respect.

The third main menu group provides various possibilities to compare the decision

makers' individual weighing and evaluation. The opinions of other group members

will often cause one member to reconsider and modify his evaluation. Such feedbacks

can be realized by WINGDSS: any decision maker is allowed to activate the appro-

priate menu again for performing modifications in the evaluation of the subjective

criteria or for changing his/her preference structure (the individual weights on the

criteria). Changes in the structure of the decison task, and /or in the function at

the leaf criteria can be performed by the Supervisor or any authorized user.

2.4 Sensitivity analysis of the result

Analysis the impact of certain decision parameters (individual preference struc-

ture, voting power of decision makers) to the final result can be performed with a

method developed separately [8], integrated recently into Version 3.0. The algorithm

can be used for different purposes:

- What are the intervals in which the weights can vary without effecting the

ranking of the alternatives?

- If the weights are allowed to vary in given intervals, how the value and position

of the alternatives will be changed?
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- What kind of transformations are needed to change the position of one particular

alternative (to make one low ranked alternative acceptable, for example)?

- If group members will agree in the ranking of a subset of the alternatives (the

top set of one, two, three, four-_.., alternatives), what changes are required in the

weights?

3. TECHNICAL DATA

Distributional format:

One floppy disk of 740 KB or higher.

Hardware requirements:

IBM-PC/AT 386 or 486, VGA card, mouse.

Operating system:

PC-DOS 3.3 or higher.

Software requirement:

MS Windows operating environment version 3.0 or higher.

How THE AUTHORS DID CONTRIBUTE TO WINGDSS?

Tamais Rapcs6k and Piroska Turchinyi are the present managers of the Group

Decision Project, together with Kriszta Keller, they also carry out research and

modelling. The tree handling modul and the handy interface for data input has

been developed by Peter Cs;ki. Levente Csisz~ir has been working on the interface

to program solvers, on the interpreter for the criteria evaluating functions, on the

methods both in the individual and group evaluation phase. Ferenc F61sz has been

responsible for any kind of data base functionalities. The sensitivity algorithm is

from Csaba Mdsziros.
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Global optimal solutions with tolerances
and practical composite laminate design

Tibor Csendes, Zelda B. Zabinskyt Birna P. Kristinsdottirt

Consider the nonlinear optimization problem

min f(z) (1)

where f(z) : 1R --+ R is a continuous nonlinear function, and the variables
are subjects of the constraints

g,(z <o j =,2,...,m, (2)

where gi(z) : R" --4 R are also continuous functions. Let us denote the
set of feasible points by A, that is A := {z E R" : gi(z) < 0 for each

jE(1,2,...,m)}.
It happens many times that the solution z" (or an approximation of it)

of a constrained nonlinear optimization problem is known, yet this result
is not suitable for practical use. It is the case when the solution should
be realized with a certain tolerance 6 > 0. If, moreover, at least one of
the constraints is active at the solution, then the n-dimensional interval
[zI - 6, z' + 61 for i = 1, 2,..., n is not entirely feasible (cf. 15] and 18]).

From practical point of view, it would be better to have a suboptimal
solution in the form of an n-dimensional interval X* (i.e. for which f (z) <
f(z') + c and g(z) < 0 j E (1,2,... ,m), where x E X, and r > 0). Such
a result interval would also reflect the sensitivity of the objective function
for changes in the arguments on the set of feasible points.

"Kalmkr Laboratory, J69sef Attila University, Sseged, Hungary
t lndustrial Engineering Program, University of Wuhington, Seattle, USA
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In contrast to interval optimization methods like 121, here an algorithm
for finding a large feasible n-dimensional interval for constrained global op-
timization is presented. The resultant interval is iteratively enlarged about
a seed point while maintaining feasibility. An interval subdivision method
is used to check feasibility of the growing box. The algorithm utilises the
inclusion functions 1,4,71 of the objective and constrain functions. These
are calculated by natural interval extension. The resultant feasible interval
is constrained to lie within a given level set, thus ensuring it is close to the
optimum. It is proved that the algorithm converges in a finite number of
iterations.

The ability to determine such a feasible interval is useful for exploring
the neighbourhood of the optimum, and can be practically used in man-
ufacturing considerations. The numerical properties of the algorithm are
tested and demonstrated by an example problem, and the procedure is ap-
plied to a real life engineering design problem to construct manufacturing
tolerances for an optimum design of composite materials.
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I - INTRODUCTION

This paper investigates the properties of a class of integer

programming model applied to a production planning problem.

Each product may require processing on several machines and may

involve precedence relationships. The machines are already

(partially) committed and only the residual capacities of each

machine in each time period of the planning horizon are available

for use. The problem is to efficiently deploy unused capacities

by determining, subject to market conditions, a production

schedule. The mcdel lies at the heart of a decision support

system for advising sales executives in determining the products

on which to focus their efforts. The models can be

computationally demanding and techniques for speeding up solution

times are highly desirable. Various preprocessing techniques

have been investigated and their effectiveness evaluated. In

addition, a number of cutting plane approaches have been applied.

The performance of these approaches which are both general and

application specific is examined.
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I1 - TME MODEL

The production environment is made up of a set of

manufacturing cells, each of which may have an amount of

unallocated capacity (resource) in each of a set of time periods

over the planning horizon. Each product can be produced according

to a number of production structures, each of which specifies the

cell resources required per unit of product in each of the

(cell,time period) combinations used in the structure.

Let the following parameters define the size of the problem:

np = number of products

ns = number of production structures

nc = number of manufacturing cells
nt = number of time periods

And let (i,j,k,t) be the index set as defined below.

i : prodct, i = 1...np
j : production structure, j = 1.. .ns

k : manufacturing cell, k = 1...nc

t : time period, t = 1.. .nt

The problem data and the variables are:

cpIkc = the amount of capacity used per unit of product i

produced according to structure j, on cell k,

in period t

sPkC = the spare capacity for cell k in period t

limprod, = market size for product 1

v1 - profi t per uni t of product i
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1= the minimum production quantity of product i,
when produced according to structure j

ui1 = the maximum production quantity of product i,
when produced according to structure j

xi, = number of units of product i, to be produced

according to production structure j

1 if product i is produced according to structure j
Yij = 0 otherwise

The problem can be formulated as:

nP ns

max • vI (E xij)
.1-.31

st:

E E CPjjkt Xi 1  S PkC (1)
i-1 J-i

k=l..nc
t=l..nt

xE XiJ< limprodi (2)
j.1

i = 1..np
x- l ij yi > 0 (3)

x1- u11 yi1 : 0 (4)
i = 1..np
j = 1..ns

xi, z 0 and integer, y1 j E (0,1)

Constraint set (1) states that the total amount of resource

used in cell k, time period t, must not exceed the spare

capacity; constraint set (2) represents the market size for each

product i; and constraint sets (3) and (4) state the minimum and

maximum quantity of product i, when produced according to

structure j.
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III - PREPROCESSING

In order to obtain a tighter formulation to the problem the

following preprocessing-techniques have been investigated.

1) Euclidean reduction (HP-91]

i)For each capacity row (constraint set (1)) let kexp be the

smallest nonnegative integer such that:

Cijkc*lOke7 is integer for all i, j

ii)Find K the greatest common divisor of the resulting integer

coefficients;

iii)Multiply the row by 10w and divide both sides by K;

iv)If the RHS after the division is not integer a tighter

representation may be derived. Since the constraint type is 'less

than or equal' the RHS can be truncated to the next lowest

integer.

2)Redundant constraints [BMW-75]

For each capacity row:

i)Compute the constraint upper bound:

Since cpljkc is nonnegative for all (i, k, t):

zjp no
Uk" cPiltt U11

ii)The constraint is redundant if:

Uc I spkC
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3)Singleton rows [BMW-75]

Consider a capacity constraint such that:

flp ng

Scpijf Xjj :ý SPkt
j-1

where CPlkt,=o for all iag and joh

Then let:

us g = SPkCScpghkt

If:

u'jb : Ugh replace ub by L U'gb J

ii)u'th < ith fix Xgh = 0 and y,, = 0

Remove the constraint.

4)Infeasibility and simple redundancy [HP-91]

In this form of preprocessing redundant constraints may be

identified and removed. The procedure is as follows:

i)In each capacity row, determine the nonzero count.

ii)For the rows with equal nonzero count determine rows whose

nonzeros match exactly both in terms of value and column number.

iii)When two rows agree, check their RHS:

a)if the RHS are equal, remove one of the rows;

b)if one inequality dominates the other, remove the dominated

one.

This technique can be extended to detect infeasibilities in

the form of conflicting constraints. However the capacity

constraints of the model are all 'less than or equal to' and

therefore this possibility cannot arise.
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IV - CUTTING PLANES

The most efficient way to get a tighter formulation for an

integer problem is to incorporate strong valid inequalities. We

have investigated two classes of valid inequalities.

The first relates to a reduced form of the model. Consider

the bounding constraints (3) and (4). Replace these constraints

by the aggregate bounding constraints (5) and (6).

na

(x• - lj Yjj) - 0 (5)

S(Xii - Uij Yjj) S 0 (6)
i-i

i = 1..np

The new model is a relaxation with 2np(ns-1) fewer bounding

constraints. If any of the original bounding constraints are

broken they can be introduced as cuts to the new model.

For the second approach, we consider the capacity rows

together with constraints (3) and (4) and reformulate them as a

single node fixed charge flow.

Given :

iw ns

CPijt Xii S SPDt

k =1..nc, t = 1..nt

xjj - lij Yij > 0

Xjj - U1j yij S 0

i = l..np, 5 * l..ns

Let:

x'V - cpOxv, U'V = cppuV, 1' - cpW l1

and relax x, to x, c I



119

We get the single node fixed charge flow model

np na

•1.X'f' spir

Sk =i...nc, t = 1..nt
ilJ Yij I X IJ jj U I j Ylj-

i = 1..np, j = 1..ns

Suppose there exists C (a generalized cover) such that:

A = ul - SPkC > 0

Let:

ui max()., max u1j), Uj= ma-x(T, U),
I. j EC-CI= 

a U i

andC= U(ij) / (i.j) f CI

Then:

S(1 - y'•) (u'1, - ).)'] + E [x' 1  - YIJ (i-il -;)] SPkC

where (U'Nj - ) = max (u'Ij - A, 0)

is a valid inequality for the single node fixed charge flow model

[VW-86].

These procedures are not restricted to this class of problem

but have widespread applicability (VW-87], (PW-91].

V - sUNoARY

A production planing model to advise sales executives on the

products on which they should concentrate in order to efficiently

deploy unused factory capacities has been developed. To speed up

the solution process, a set of preprocessing techniques and valid

inequalities have been investigated. Experimental results for a
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range of model sizes (to be reported) indicate that the

procedures have a beneficial effect.
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I. INTRODUCTION

The application considered in this paper is the
determination of an annual, day-by-day, schedule for a
fleet of United States Coast Guard cutters within a given
geographical area. The tasks assigned to the cutters are
varied and include patrolling in specified districts of the
area, training exercises and maintenance. The feasibility
of a particular cutter schedule is governed by a set of
operational rules that depend, in part,-on the timing and
nature of the tasks already assigned to the cutter prior to
the start of the scheduling year in' question. Other
factors include transit allowances before and after a task,
the duration of in-port time after the completion of a task
and cutter capabilities. The requirements placed on the
fleet fall into two principal categories. The first
relates to minimum levels of cover in terms of the number
of cutters of given classes on patrol in each area at any
given time. The second category of requirement concerns
training and cutter maintenance. In these cases upper
limits are placed on the number of cutters undergoing these
tasks at any given time.

One approach to modelling scheduling problems of this type
is to generate, for each cutter, a set of possible
schedules, and to determine the 'best' fleet schedule by
selecting one of the possible schedules for each cutter.
This formulation leads to an integer programming model
which has been widely advocated (e.g. (2]) in various
guises.

However, in many scheduling applications, especially in the
area of vehicle scheduling, the list of 'requirements'
often results in the non-existence of a feasible solution.
In such cases, a relaxation of the requirements is
necessary in order to obtain a schedule. On further
examination of the practical issues it is frequently the
case that some of the 'requirements' merely reflect
desirable characteristics rather than strict requirements.
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In developing a scheduling model that yields useful
solutions, Darby-Dowman and Mitra (1] proposed the extended
set partitioning model which was essentially an integer
goal programming formulation of a set partitioning model
and admitted set covering, set packing and set partitioning
as special cases.

In that model, the requirements were treated as targets and
undercover (below target) and overcover (above target) were
allowed but penalised. Our approach to the cutter
scheduling problem follows a similar vein.

II. MODELLING THE SCHEDULING PROBLEM

Within the operational rules that govern the tasks and the
cutter duties, a set of possible schedules is generated for
each cutter. An optimal schedule is one which is as close
to meeting requirements as is possible. The generic model
is stated below:

Parameters: nc = number of cutters to be scheduled

n= number of columns (possible
schedules) for cutter k,
k = 1,2,...nc

nt = number of time periods in the
scheduling year

ng = number of constraint groups (schedule
'requirements')

Index sets

i schedule requirement, i = 1,2,.. .ng

j : time period, j = 1,2,...nt

k : cutter identifier k = 1,2,...nc

1 identifier of possible schedule for
cutter k
1 - 1,2,....

Model Variables

S= 1 if the l'th possible schedule for cutter k
is selected

0 otherwise

u4 : Extent of the under-achievement in respect
of schedule requirement i in time period J.

ov : Extent of the over-achievement in respect of
schedule requirement i in time period J.
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Model Coefficients

a= 1 if the l'th possible cutter schedule for
cutter k contributes to schedule requirement
i in time period j.

= 0 otherwise.

r, :target/limit/threshold for schedule
requirement i in time period j in terms of
number of cutters contributing to the
schedule requirement.

w (aO) Penalty for each unit of under-achievement
in respect of r,

w+ý(ý:O) :Penalty for each unit of over-achievement in
respect of r•

Model

ng nC

Min ( UiJ + Wij OiJ)
i-I J1-1

subject to

nc n= i = 1,2... ng

k- aijklXkl + UiJ- Oij = i j = 1,2, .. nt

k'l 1-1
nk

S Xk1 = 1 k = 1,2 .... nc

Xkl E(0,lJ k = 1,2 .... ncX)' e [ , 11 k = 1 , 2 . . . .n k

Remarks on the Model

(1) The model is stated in a generic form. In any given
application instance, simplifications may be possible.
For example, if schedule requirement i is such that r4
represents a desired lower limit then the penalty for over-
achievement, w÷,, can be set at zero and o• considered as a
logical variable. Similarly, if schedule requirement i is
such that r, represents a desired upper limit then the
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penalty for under-achievement, wi can be set at zero and ug
considered as a logical variable.

(2) The number of time periods in the scheduling year is
a matter for judgement in relation to the individual
application. A day-to-day schedule covering one year is
required. Thus in its simplest form, nt equals 365 or
366. However, model size and hence solution time can be
reduced by considering a larger time unit. In certain
cases this can be achieved without loss of model validity.
For.example, if the duration of tasks and activities is
always an integral number of weeks, the problem can be
modelled on a week-to-week basis with nt reduced to 53.
Even if the duration of tasks and activities is not always
an integral number of weeks it may still be worthwhile to
adopt the time unit change in order to obtain solutions
more quickly with a possible sacrifice on solution quality.
This aspect is investigated in section 3.

(3) The cutter scheduling problem reported here has the
following size parameters. There are 30 cutters to be
scheduled. There are 9 sets of schedule requirements, 5
of which represent desired minimum levels with the
remaining 4 representing desired upper limits. The
minimum levels/upper limits are invariant through time and
range from a value of 1 to a value of 5.

III. TIME UNIT COMPRESSION

A major factor influencing the difficulty with which the
model may be solved is the number of constraints. Each
scheduled requirement results in (nt) constraints. As
stated in the previous section the most natural form of the
model has (nt) equal to the number of days in the year (365
or 366). With 9 (sets of) schedule requirements, the
model would have over 3000 rows. In addition the columns
are very dense with, typically, 200-250 nonzeros per
column. The idea of developing a 'coarser' model in which
each time period is increased in size (e.g. from 1 day to
7 days = 1 week) is attractive in significantly reducing
the size of the model both in terms of the number of rows
and the number of nonzeros. Clearly there may be a
reduction in solution quality since the model may be a less
precise description of the scheduling problem.

The activities performed by the cutters involve patrolling,
maintenance and training. Each of these activities takes
place in various forms. For example, the area within
which patrolling takes place is divided into various
districts, each with its own requirements in terms of
cutter coverage. Additionally there are activities such
as transit between tasks and necessary time spent in port.
With the exception of transit times, the required durations
or range of durations of the tasks tend to be specified in
terms of an integral number of weeks and, as a consequence,
the time unit compression from days into weeks appears more
likely to be viable. Some tasks (e.g. training and
maintenance) are required to start on a specified day of

.i.... ..
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the week - but not necessarily the same day of the week.
It is for this reason that the weekly model introduces an
element of approximation compared to the daily model.
Consider the example shown in Figure 1. Suppose that the
time unit compression is such that each Monday through
Sunday time period of 7- consecutive days is considered as
one new time unit. Suppose further that a training task
is required to start on a Monday and a maintenance task is
required to start on a Wednesday. Then in the example,
training takes place in week k since it takes place on
every day of week k. However, the maintenance task takes
place only for part of week k. In converting from a daily
to a weekly model, the question of whether a given task
takes place in a given week must be addressed.

Day:...F.S.• M.T.W.T.F.SSI M.T.W.T....
Week k-1 Week k I Week k + 1

Training

I----------------------~
Maintenance

Figure 1: Task start days example

The proposed model treats this issue conservatively such
that a feasible weekly schedule, when converted back, will
necessarily yield a feasible daily schedule. To achieve
this, the treatment depends on the type of constraint
considered. The schedule requirements are specified in
terms of desired upper limits (implied less than or equal
to constraints) or desired lower limits (implied greater
than or equal to constraints). In the former, over-
achievement is penalised whilst in the latter, under-
achievement is penalised.

The constraint coefficients of the weekly model are
therefore determined as follows:-

If the constraint group (schedule requirement)
i is a 'desired upper limit' type constraint
then

a• = 1 if the l'th possible (daily)
schedule for cutter k covers
al 7dayof week j

- 0 otherwise

If the constraint group (schedule
requirement) i is a 'desired lower limit'
type constraint then
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a., = if the l'th possible (daily)
schedule for cutter k covers
ny dy of week j.

= 0 otherwise

The overall modelling strategy is illustrated in Figure 2.
The daily model is generated and converted to a weekly
model as described above. The weekly model is then solved
and the solution in terms of a weekly schedule for each
cutter is obtained. These weekly schedules are matched
with the schedules of the daily model to obtain daily
schedules which are then post-processed. The post-
processing performs a series of quick local optimisations
which apply daily time shifts to patrolling tasks whenever
such shifts lead to local improvements

Generate daily model4
Convert to weekly

model

Solve weekly
model4,

Convert weekly solution
to daily solution

4,
Post-process the
daily solution

Fiaure 2: Overall Modelling Strategy
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IV. SUMMARY

A practical model for determining an annual day-by-day
schedule for a fleet of United States Coast Guard cutters
has been developed. The model was made computationally
more tractable by considering a smaller number of larger
time periods. Results (to be reported) indicate that
little is sacrificed in terms of solution quality by
adopting this form of time unit compression.

In common with many scheduling problems, the simultaneous
satisfaction of all requirements may not be possible. The
use of what is essentially an integer goal programming
model ensures that model feasibility is assured. The
solution is either a completely satisfactory schedule or as
near to one as is possible.

The model lies at the heart of a decision support system
that is in the process of being implemented by the United
States Coast Guard.

V. REFERENCES

1. Darby-Dowman, K. and Mitra, G., 'An Extension of Set
Partitioning with Application to Scheduling Problems',
European Journal of Operational Research, Vol.21, pp
200-205, 1985.

2. Marsten,R.E. and Shepardson,F., 'Exact Solution of
Crew Scheduling Problems using the Set Partitioning
Model: Recent Successful Applications', Networks
Vol.11, pp 165-177, 1981.



REPRESENTING PROCEDURAL KNOWLEDGE WITHIN
MATHEMATICAL PROGRAMMING MODELLING SYSTEM (MPL)

Ken Darby-Dowman*
Bjarni Kristjansson**

Cormac Lucas*
Gautam Mitras

Shirley-Anne Moody*

*Department of Mathematics and Statistics,
Brunei, The University of West London,
Uxbridge, Middlesex, UB8 3PH, England

** Maximal Software Ltd,
Klappara 11, 15-110 Reykjavik, Iceland

1. INTRODUCTION

Languages for representing Linear Programming Models for optimization are well
established. These languages follow a simple algebraic structure to represent the
linear form restrictions and are adequate for a vast range of LP models.

There are many experimental and commercial systems of this genre which are used
by industry, for an uptodate review of such systems the reader is referred to (Steiger
and Sharda,91), (Greenberg,91). Most modern modelling systems enable the
modeller to specify models in a declarative algebraic language. A set of algebraic
statements in a modelling language both specifies and documents a model, whereas
the generation of a machine readable constraint matrix takes place in the background.

It is now increasingly realized that alternative modelling paradigms such as database
modelling, mathematical programming modelling, simulation, logic programming and
programs written in a high level computer language are essentially different forms of
knowledge representations as perceived by the Al Community (Geoffrion, 1990),
(Mitra, 1989). Knowledge expressed in a declarative form and knowledge specified
in a procedural form are two main approaches to knowledge representation.

In this paper we first identify an important deficiency of many known Mathematical
programming modelling languages. These languages are well designed to represent
large classes of LP and IP models in the declarative form. A wide class of other
optimization models applying to many real problems such as crew scheduling, cutting
stock, VLSI routing and ship scheduling provide instances of models which are highly
dependent on domain knowledge. For these models the domain knowledge
concerning the rules of crew duties, alternative ways of defining cutting patterns,
possible minimum cost routes, a set of tasks around calendar dates can be only
specified in a procedural form. Although modelling systems are well set out to
structure the model components, by their very nature these modelling systems lack
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the procedural constructs. As a result activity based LP models which are
constructed by a column generation strategy across a fixed structure of rows, cannot
be developed within these systems.

We have introduced extensions to an established LP modelling system namely MPL
whereby the procedural knowledg& is introduced through a dynamic binding of the
high level modelling language. We also introduce object orientation thus taking
advantage of encapsulation, inheritance, and information hiding. In this way we can
capture procedural knowledge in the form of methods within self contained objects.
The extension is illustrated by an example of an optimum cutter scheduling problem
studied by the authors.

ACTIVITY BASED LP/IP MODELS

As explained in the introduction many practical models are such that the underlying
LP can only be constructed if the activities specifying the technology matrix, that is,
the columns, are computed using the domain knowledge of the application. We
consider a few examples.

Crew Scheduling: Both air crew (Johnson (1990)) and bus crew scheduling (Darby-
Dowman and Mitra, 1985) problems are by nature, set partitioning or set covering
problems or their extensions. The rows represent legs of flight or pieces of work
which must be covered by the crew. The columns represent ways of carrying out
a work shift that is legal within union regulations and accepted practises.

VLSI Routing: VLSI routing (Pulleyblank, 1992) is a well known combinatorial
problem which has the structure of a set problem in which columns are generated
after solving a travelling salesman problem.

Cutting Stock Problem: One and two dimensional cutting stock problems
(Gomory, 1965) have many industrial applications in the area of minimum wastage of
sheet material. Here again the columns are constructed by a combinatorial procedure
for fitting patterns within a two dimensional master area. Alternatively by solving
a knapsack problem using dynamic programming recursion efficient patterns and
corresponding columns can be generated.

Cutter Scheduling Problem: We have developed a model (Darby-Dowman, 1992)
which uses integer goal programming in respect of a set problem with some additional
choice constraints. The problem is set out in the next section.

2. STATEMENT OF THE CUTTER SCHEDULING PROBLEM

The problem involves creating an annual schedule for nc number of cutters to carry
out tasks such as Patrol, Maintenance, training whereby the schedule specifies the
activity of each cutter for each day of the year.
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Derme the parameters
nc = number of cutters to be scheduled,

n,- = number of columns (possible schedules) for cutter k,

nt = numberuf time periods in the scheduling year,

ng = number of constraint groups (schedule 'requirements'),

The corresponding index sets
i i = 1,2,...,ng; schedule requirements,

t : t = 1,2,...,nt; time period,

k :k = 1,2,...,nc; cutter identifier

t: I = 1,2,..., n,; identifier of possible schedule for cutter k,

Model Variables
xkt = 1 if the &' possible schedule for cutter k is selected 0 otherwise,

u,: extent of the under-achievement in respect of schedule requirement i in time
period t,

oR: extent of the over-achievement in respect of schedule requirement i in time
period t,

Model Coefficients
a = I if the I" possible cutter schedule for cutter k contributes to schedule

requirement i in time period t, 0 otherwise,

r•: target/limit/threshold for schedule requirement i in time period t in terms of
number of cutters contributing to the schedule requirement,

w' (O): penalty for each unit of under-achievement in respect of r1 ,

wik(;>O): penalty for each unit of over-achievement in respect of ri

The model s stated as,

ng na

Min , (w'itul + W it )

subjec to
nc ni, a- i 1,2 .... , ng

nkk , al = 1 k = 1,2, .. nc

k -1,2,...,nc
xkI 0 or 1 1 1,2,...,nk
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3. COLUMN GENERATION PSEUDO CODE

ATIVAM

a.cutschedule (Cutter,Class,Port,Tasks,Time)

: do for all cutters.

Analyse DATES

: do for task group one
*/maintenance and training tasks/*

: go to task order(j),fj = 1,2,31
task order (1) : allocate maintenance to this cutter group

go to loop end
task order (2) : allocate reftraining to this cutter group

go to loop end
task order (3) : allocate training availability to this cutter group

go to loop end
loopend : endo

: do for allowable patrol tasks
*/patrol tasks/*

patrol order (1) : allocate patrol
go to patrol end

..... .....

patrol order (4) : allocate patrol

patrol end : endo

cutters end : endo

4. EXTENDED MPL SYNTAX

MPL is a modelling language for specifying linear programming problems. As in
any other algebraic LP modelling language the model can be specified by
progressively introducing a series of keywords which divide the model components
across sections. The syntax and structure of MPL is set out below in a summary
form, (Maximal, 1991)
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The Definition Part

TITLE - Names the problem
INDEX - The dimension of the problem
DATA - Scalars, datavectors and datafiles
DECISION Define vector variables
MACRO Reusable macros for expressions

The Model Part

MODEL Description of the problem
MAX or MIN - The objective function
SUBJECT TO - The constraints
BOUNDS - Simple upper and lower bounds
FREE - Free variables
INTEGER - Integer variables
BINARY - Binary (0/1) variables

END

TYPICAL LINEAR FORM SYNTAX
SUM (<index> : <table ref>*<decision variable>)
< relation > < table ref>

SCHEDULING MODEL SPECIFIED IN EXTENDED MPL

TITLE
csapschedule

INDEX
nmbcutters = 1..30;

#DYNAMIC npos (nmbcutters)
notimeperiod = 1..53;
notasks = L.9;
patrol = (D1,D3,D5,D7);
maintenance = (drydock, dockside);

DATA
tasklimits(patrol]: = DATAFILE (tlimpat.dbs);

0

oversatcost(notasks,notimeperiod]: =DATAFILE(ostcost.dbs);
undersatcost(notasks,notimeperiod]: = DATAFILE(ustcost.dbs);
coverreqmt(notasks,notimeperiod]: = DATAFILE(cover.dbs)

DECISION VARIABLES

oversatqnotasks,notimeperiod];
undersat(notasks,notimeperiod]

#DYNAMIC xschedule[npos(nmbcutters)];
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MODEL
MIN deviation = SUM(notasks,notimeperiod: oversat*oversatcost +

undersat*undersatcost);

SUBJECT TO
COVER[notasks,notimeperiod-:
SUM(nmbcutternpos:a cut schedule*xschedule)

+ undersat - oversat = coverreqmt;

CHOOSE l[nmbcutters]: SUM(npos:xschedule) = 1;

BINARY
xschedule;

END
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1 Introduction

Given a machine which can process at most one task at time, and a set T = {Th... , T,}

of n tasks with associated processing times pl,... ,Pn, deadlines dl,...,d,,, flow time

penalties al,..., a,, and earliness penalties 3x,...,/3n, the Single Machine Scheduling

Problem with Earliness and Flow Time Penalties (SMEF) is to determine a processing

sequence for the tasks that minimizes the total cost incurred by the penalties, while

preserving deadline requirements of each task. The processing cost associated with each
task Ti is equal to its completion time C, multiplied by the flow time penalty, plus

its earliness Ej = d, - C, multiplied by the earliness penalty. Using the three-field

classification introduced in Graham, Lawler, Lenstra and Rinnooy Kan [7I, the problem
is denoted as 1IdiI E(ajCi +/%jEj).

We assume that processing times, deadlines and penalties are positive integers, that

tasks are available at time zero, that setup times, if any, are identical and included in the

processing time and that preemption of tasks is not allowed. A schedule (i.e. a solution
for problem SMEF) is defined through the vector (Cl, C 2 ,. . . , Cn) of the completion

time of the tasks: task T, is processed in time interval (Cj - pi, ,C]

The flow time penalty has classically been used to model overhead and capital car-

rying costs sustained during production, while the earliness penalty takes into account
the cost incurred for storing a finished product until it is shipped.

The problem is strongly NP-hard, since it is a generalization of the single machine

scheduling problem calling for the minimum weighted flow time sequence with no tardy
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task (Xld~ E cC) which is known to be NP-hard in the strong sense (see Lenstra,
Rinnooy Kan and Brucker [81). An exact algorithm for SMEF, based on a dynamic
programming approach, has been developed by Bard, Venkatraman and Feo [2]. Feo,
Venkatraman and Bard [4] have recently presented a heuristic algorithm based on a
Greedy Randomized Adaptive Sear&-i Procedure (GRASP). Special cases and related

problems have also been studied by Fry and Leong [6], Bagchi and Ahmadi [1], Faaland
and Schmitt [51, and Sen, Raizadeh and Dileepan [101.

In the following sections we develop lower bounds and an approximation algorithm for
SMEF and show, through computational experiments, the effectiveness of the proposed
approaches. In Section 2 we present some simple lower bounds and a better one based on
a preemptive relaxation of the problem. In Section 3 we use the preemptive lower bound
to obtain an approximation algorithm. The approximation algorithm is experimentally

analyzed in Section 4.

Unless otherwise specified, we will always assume that the tasks are numbered so

that:

d d2 _ d..(1)

2 Lower bounds

The objective function of SMEF can be written as:

n n n

Z(SMEF) = minZ(ajC, +/3j(d - C,)=Egd + min~w,C, =
j=1 j=1 j=1

• n

=- Z/31 di + z(SMEF'); (2)
j=1

where wi = aj - /3 is the overall penalty of task Ti.

2.1 A simple bound

We can partition T into TR = {Tj E T : woj < 0} and TL = {T, E T : wi ,> 0}. These
two subsets contain tasks that have different behaviour in an optimal schedule: the tasks
of set TR require to be processed as late as possible, while those of set TL must be
scheduled as soon as possible.

Let PR (resp. PL) denote the sub-instance of SMEF' in which only the tasks in TR

(resp. TL) are considered, and let z(PR) (resp. z(PL)) denote the corresponding solution

value. We will consider the relaxation of SMEF' obtained by assuming that a task in

TR can be processed in parallel with a task in TL: the optimal solution to this problem is
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dearly provided by the separate solutions to PR and PL, so L = E=J' 1di-+-z(PR)-+-z(PL)

is a lower bound on z(SMEF).

Since any instance of lrjl E wjCj, which is known to be strongly NP-hard (see

Lenstra, Rinnooy Kan and Brucker [81), can be easily transfrmed into an equivalent

instance of PR, we know that thu's problem too is strongly NP-hard. Problem PL is the

already mentioned ldj I E wiCj, which is also known to be NP-hard in the strong sense.

Hence above lower bound L cannot be computed in polynomial time, but we can deter-

mine lower bounds L(PR) and L(PL) for the two subproblems, obtaining lower bound

L = E'?,=,jdj + L(PR) + L(PL).
A lower bound for problem PR can be obtained by allowing that more than one task

of TR can be processed at a time. The optimal solution is dearly obtained in O(n) time

by scheduling each task as late as possible, i.e. setting Cj = dj for each Tj E TR, and

its value is:

Lo(PR) = wd,. (3)
TjETR

A lower bound for problem PL can be computed by relaxing the deadline con-

straints, obtaining the problem I I •I wjC, which can be exactly solved (see Smith (11])

in O(n log n) time by scheduling the tasks in order of decreasing value of the ratio w,/pj:

let LO(PL) denote the solution value. Then

Lo = •O3,dj + Lo(PR) + Lo(PL), (4)
j=1

is a valid lower bound for SMEF.

The time complexity for the computation of Lo is clearly O(n log n).

2.2 A new lower bound

Let us consider the following new problem, called S(SMEF') in the sequel, derived from

SMEF' by allowing that each task Ti can be split into k(j) pieces Tj,,..., TAU) with

deadlines dii = di for each i and j, positive processing times p,'...-, Pj.( such that

Ei_3 pii = pi for each j, and weights wi ,..., w.(,) having the same sign as w, and such

that i•l wj, = w, for each j.

Let Cj, be the completion time of piece Tj,: the objective function of S(SMEF') is

,i k(j)

Posner [9] proves (for the case wi 0, but the proof holds also for unrestricted wi)

that, given a feasible solution to SMEF', of value z, the corresponding solution for
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S(SMEF') (obtained by consecutively scheduling Tji,..., Ti.,) in time interval (Cj -

pi, Cj]) has value ! such that z = Y + CBRK where

n k(j) k(j)
CBRK = E Ewji pj, (6)

j=1 i=i h=s= I

Let i7 be the optimal solution value of S(SMEF'), then T <, hence

n

L, = Efl_, + z"- + CBRK (7)
j'=1

is a valid lower bound on the value of z(SMEF).

Given a feasible task splitting, we can partition the set of pieces of S(SMEF') into

T+ = {T1 , : wj, _> 0} and T- = {Tj, : wj, < 0}. Let n+ and n- be the cardinalities of

these two subsets, were obviously we have n r + n- = En I k(j). Let us also rename the

pieces in such a way that

T+ = {T,,T 2 4...,T.+}, TJ=r T',T,..., T_

(with d+, d-, pj , p-, wt, w- renamed accordingly) and that

dj < dj++,; d,-; d-+,. (8)

Definition I Given set T-, a block is a set B, = {T.,, T.,,+,, ... ,T,.I of consecutive

pieces (ordered according to (8)), whose total processing time is not grater than the time
interval between the deadline of Ta_,- and the deadline of Tb.. Let si = i - EbJJ ,P:
the associated block interval is BI. = (s., dbj].

Let us define

n+

r= min{t:-ZpI++ E p,- <s, foreachi:d6, >t}, (9)
j=1 TT:d7<t

and note that 7 must be the completion time of a piece belonging to T+. Then we can

divide problem S(SMEF') in two subproblems:

PA: S(SMEF') for the pieces in TA = T+ U {T7: d7 < r},

PB: S(SMEF') for the pieces in TB = {T, : di > rj,

and observe that T.,EPA pj = r.
Without loss of generality, let us assume from now that pj, = 1 for each ji.

Theorem 1 The separate optimal solutions to P 4 and PR do not overlap and produce

the optimal solution to S(SMEF').
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Proofh the pieces in TA must obviously be scheduled before r. Observe that in any
optimal solution to S(SMEF') the pieces in TB must be scheduled after r. Assume
indeed that a unary piece T3 E TB is scheduled before r: by definition of r, a piece
T+ E TA must be scheduled after r, so interchanging the two units the solution would
improve. Hence the thesis, since 7cheduling any piece of T+ after r would leave a useless
idle time before r. 0

Problem PB it is equivalent to lril Z vjCj, with tasks allowed to be splitted as
described above, and vj = -wj, rj = max&{d&} - dj. This problem is exactly solved by

the algorithm proposed by Belouadah, Posner and Potts [3].

Theorem 2 In the optimal solution to PA any unit T7 E TA is scheduled in the block

interval associated with the block containing T7.

Proof: we prove the theorem by absurd. Let B, be the rightmost block not containing

a unit T- belonging to the block, and observe that such T- must be scheduled at a time
instant preceding BI,. Since in any optimal solution, no idle time can exist between 0
and r, Bj must contain at least one unit of T+ (indeed no unit of T- could come from

a block on its right, by definition of Bi, nor from a block on its left, since this would

violate the deadline): let T+ denote the rightmost such unit, scheduled at t E BI,. Find

the rightmost unit t-, scheduled at a time instant preceding t, which can be scheduled

in t (note that such unit must exist, since, by definition, a block interval can be filled

by units of T- with no idle time). Interchanging T+ and t-, we would improve the

solution, a contradiction. Further observe that, if !t- - t-, the process can be iterated

until !t- is moved to BI,. C3

Corollary 1 Problem PA decomposes into: (i) the problem P; of optimally scheduling

!he pieces beionging to T- of each block of PA in the associated block interval; and (ii) the

problem PAj of optimally scheduling the pieces belonging to T+ in intervals (0, r] \uj{ BI:
d~ < r'j.

Problem P; can be optimally solved applying the algorithm of Belouadah, Posner

and Potts (3] to the tasks Ti E TR such that the corresponding pieces are in TA. Problem

PA can be optimally solved applying the Posner algorithm to an instance defined by the

tasks T. E TL, plus a number of dummy tasks -, one for each block Bi with d4, _< r,
having deadlines db,, processing times (d4, - sa) and weights -e (with e > 0). Observe

that such algorithm would schedule each dummy task exactly at ai without splitting it.

Hence, in order to compute lower bound L1, we should derive from the original

problem the three problems P+, P; and PB, and separately solve them. However, we

can obtain a unique O(n log n) algorithm that determines and solves these problems at
a time, by modifying the Posner algorithm. The Posner algorithm for l1 dIE wiu~j with
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task splitting starts with a time instant t = ,=, pi, and schedules, by decreasing time
instants, tasks or pieces in [0, t]. This algorithm, which works also for negative weights,
can directly solve both PA and P; if applied to PA with starting time t = r. To solve PB,
it is sufficient to observe that the algorithm proposed by Belouadah, Posner and Potts
for the problem obtained from PB b•-replacing vi with -wj and rj with maxa{dk} - di,
is equivalent to iteratively apply the Posner algorithm to the tasks of each block BIE,
starting from the rightmost one. When a block is completely scheduled, if the sum of
the processing times of the unscheduled tasks is greater than the ending time of the next
block, then this is the first block of PA, and problem P, is optimally solved.

3 Approximation algorithm

In this section we introduce an approximation algorithm for SMEF based on lower
bound L1. The algorithm determines a feasible schedule for problems SMEF, start-
ing from the optimal solutions of problem S(SMEF'). Given the optimal solution
to S(SMEF'), and observing that this can be infeasible for SMEF only because of
the splitted tasks, we can easily obtain a feasible sequence as follows. We start with
t = maxi{4dN} and proceed by decreasing completion times until we encounter a piece
Tio obtained by splitting a task (or a piece) Tj into Tio and Ti,, with processing times
pj. and p,., respectively, scheduled at time instants t = t and t,, with t. > t4 + Pi.. We
can eliminate this infeasibility in three possible ways;

a) scheduling Ti, at time instant t. - pi, and shifting left, of Pib time units, all the

tasks currently scheduled between Ti., and Tj,;

b) scheduling Ti. at time instant ti--pi. and shifting left the necessary tasks preceding
TA,, until an idle time interval of length at least pi. is created, if the corresponding
schedule is feasible;

c) scheduling Ti. at time instant tb + p., and shifting right the tasks between Ti. and
Tio, of pj, time units, if the corresponding schedule is feasible.

Whenever a piece is encountered, the algorithm evaluates all these alternatives and

selects the one producing the minimum objective function increase.
The final approximate solution to SMEF is then obtained by optimally inserting idle

times. This can be done through the O(n) procedure described in Bard, Venkatraman
and Feo [2).
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4 Computational Results

We have coded in C language the lower bound L1 described in Section 2, the GRASP
heuristic described in Feo, Venkatraman and Bard [4] and the approximation algorithm
of Section 3.

We executed computational experiments on a PC 486 with a 33 MHz dock, by
considering problems as those described in Feo, Venkatraman and Bard [4].

For each task Tj the associated values of pi are uniformly random in range [1, 101.
For each value of n, (n = 10, 15,20,25,30), three classes of random test problems are

defined:

I) a, _ /3j for approximately 50% of the tasks;

II) at_ S /. for approximately 66% of the tasks;

III) aj _: Pj for approximately 33% of the tasks;

where both aj,,/j E [1, 101.

The deadline of each task Tj is uniformly random in range [/3- X= 1 pj, /3+ I piJ,
with the following (6-,P/+) pairs: (0.75, 1,75), (0.25, 1.75), (0.75, 1.75), (0.50, 2.50),
(0.25, 1.25), (0, 1.25), and (0, 1).

For each class, for each value of n and for each pair (fl-,/+) ten feasible problem
were generated, giving a total of 350 instances.

The computational experiments have proved that the algorithm of Section 3 produces
solutions better than those produced by GRASP, with running times which are up to
two orders of magnitude smaller.
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Combining Genetic and Local Search for Solving the Job Shop
Scheduling Problem

Ulrich Dorndorf* Erwin Pescht

Abstract

This paper describes a genetic algorithm that uses a local search based improvement
operator for solving the job shop scheduling problem. The genetic algorithm serves as
a meta-heuristic that guides a procedure for building starting solutions which are then
improved by local search. Initial computational results are encouraging: The algorithm
iias solved the famous 10 x 10 problem instance formulated by Fisher and Thompson
in i963 which has defied solution for over 20 years.

1 Introduction

The minimum makespan problem of job shop scheduling (JSP) is a classical combinatorial opti-
mization problem that has received considerable attention in the operations research literature; in
the recent years, exact algorithms [6, 3, 5] and tailored approximation methods [2] for the JSP have

been significantly progressed. It is well known that the JSP is NP-hard [23] and belongs to the

most intractable problems considered. The problem is thus a good test for evaluating the power
of generally applicable approximation techniques [1]. The algorithm described here combines two
such techniques, genetic and local search. The idea of using problem specific information in form of
local search within the framework of a genetic algorithm has been suggested before in a number of

publications, see for instance [18, 26, 15, 27, 1, 21, 33, 9]. This paper focusses on the combination
of relatively simple building blocks rather than on fine-tuning the inidividual parts; for instance,
more intricate local search neighbourhood structures than the one employed here are known [22, 8].

The remainder of this paper is organised as follows. After a short introduction to the JSP

in the next section, section 3 presents a simple variable depth search improvement heuristic; we
assume ti~at the reader is familiar with the concepts of local search. Section 4 describes the
genetic framework in which this procedure operates. We conclude with a description of initial
computational results.

2 The Job Shop Scheduling Problem

A job shop consists of a set M of m different machines that perform operations on a set J of
jobs. Each job has a specified processing order through the machines, i.e. it is an ordered list
of operations from set V = (1,..., n}. An operation is characterized by the machine it requires

and by its processing time. Operations cannot be interrupted (non-preemption), each machine can
handle only one job at a time, and each job can only be performed on one machine at a time.

The problem is to find operation sequences on the machines which minimize the makespan, the
maximum of the completion times of all operations.
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An illuminating description of the problem is the disjunctive graph model introduced by Roy
and Sussman [31]. In the edge-weighted graph, there is a vertex for every operation i E V and two
dummy vertices 0 and n + 1 representing the start and end of a schedule. For every two consecutive
operations of the same job there is a directed arc from the arc set A between the corresponding
vertices; the start and end vertices 0 and n + I are considered to be the first and last operation,
respectively, of every job.

For each machine k E M the edge set Ei contains all pairs (i, j} of operations to be performed
on k. Because these operations cannot overlap, an orientation of the disjunctive edges in Ek must
be chosen: an operation i either has to be performed before j (choose the orientation (i, j)) or after
j (choose (j, i)). A solution to the JSP (a schedL~e) can be seen as an crientation of all disjunctive
edges in E = {E 1 ,.. . , E,)} such that the resulting Graph G(V, A, E) is z.cyclic, i.e. there are no
precedence conflicts between operations.

Each arc or oriented disjunctive edge (ij) in G is labeled with a weight corresponding to the
processing time of the operation (vertex) i from which the arc/edge starts. rhe earliest starting
time ti of an operation i in a schedule is equal to the length of the maximum weight or longest
path in G from the start node 0 to vertex i; the makespan of the schedule is eoual to the length of
the maximimum weight or critical path from start node 0 to end node n + i

3 A Local Search Procedure for the JSP

Most neighbourhood structures that have been employed in local search algorithms for the .ISP can
be considered to be based on an idea used in one of the first exact solution metdhods for the problem
due to Balas [4]. His implicit enumeration algorithm makes use of the fact that in every schedule
with a makespan shorter than the one of the current schedule, at least one of the disjunctive edges
on the critical path of the current solution graph must be reversed. Reversing an edge on the
critical path of a directed graph always yields an acyclic graph [41. in other words a new feasible
solution without precedence conflicts between operations. These observations sliggest the following
neighbourhood structure:

The neighbourhood N(z) of a soiution r characterized by tie solution graph G, is the
set of solutions y with a solution graph G. that can be obtained from G, by reversine
the orientation of a disjunctive edge (i,j) on the critical Path of G., i.e. by repiacing
(i, j) with (j, i).

Reversing the edge (i,j) means changing the order in which i and j are processed on a machine.
This neighbourhood is connective [4, 22]: It is possible to transform an arbitrary solution into
every other solution, including the optimal one, by going through a sequence of inoves in the
neighbourhood, in other words by iteratively replacing a current solution z with one of its neigh-
bours Y E N(z).

In order to use the neighbourhood in a local search algorithm, a gain intist be associated with
every move. The gain g(i, j) from reversing an edge (i, j) can be estimated baseu on considerations
about the minimal length of the critical path of the resulting graph (finding the exact gain of a
move would generally involve a longest path calculation). The gain of a move can be negative,
thus leading to a deterioration of the objective function. For details, we refer to (41.

The simple neighbourhood structure described above has been extended by Matsuo c. al. "25]
and Dell'Amico and Trubian [8], see also [32, 1, 221.

In the remainder of this section, we present a local search procedure that uees the neighbourhood
defined above. The algorithm is based on a technique described by Kernighan and Lin [20, 24],
which has later been named 'variable depth search' by Papadimitriou ana Steiglitz [29]. The
method can be seen as a special case of a more general approach introduced by Glover [14]. The
basic idea is similar to the one used in tabu search [12, 13], the main difference being that the list
of forbidden (tabu) moves grows dynamically during a variable depth search iteration and is reset
at the beginning of the next iteration.
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Figure 1: A variable depth search algorithm

start with an initial solution z°;
repeat

T := 0; {T is the tabu list)
d:= 0; {d is the current~search depth}
do

d:= d+ 1,
find the best move, i.e. the disjunctive edge (i*,j*) for which g(i*,j*)
max {g(i,j)l(i,j) E E-T); {note that g(i°,j*) can be negative}

make this move, i.e. reverse the edge (i',j*), thus obtaining the solution rd at
search depth d;

T := T+ {(j*, i*));
while ITr $ 1 -E1;
let d* denote the search depth at which the best solution Zd- with f(zd.) =

min {f zf)jO < d < jEll has been found;

if d* > 0 then

until d* = 0;

The algorithm is outlined in figure 1; f(x) is the objective function. Beginning with a starting

bolution r*<, dhe proc.edure looks ahead for a certain number of moves and then sets the starting

solution z"1) for 'he next itzration to the best solution found in the look-ahead phase at depth d*.
These steps are repeated as long as an improvement is possible. When the maximal look-ahead
depth where the lcngth T1 of the tabu list equals the cardinality lEt of the edge set is reached,

every disjunctive edge has been reversed once. The step leading from a starting solution zX() in

iteration k to ihe starting solution x*c(+I) in the next iteration consists of a varying number d" of

moves in the neighbourhood, hence the name variable depth search. At the inner level of the 'do
while' loop, the algorithm can escape local optima by allowing moves with negative gain. Cycling
is avoided via the dynamically growing tabu list T. At the outer level of the 'repeat until' loop,
the procedure stops as so3n as an iteration without improvement occurs.

As an extension oi the algorithm, the outer level ('repeat until') could be embedded in yet
another control loop (not shown here) and use a search strategy similar to the inner level, thus
leading to a multi-level search algorithm [14].

4 A Genetic Algorithm for the JSP

Genetic algorithms (GAs) are general search strategies and optimization methods motivated by
the theory of evolution; they date back to the early work of Holland [19] and Rechenberg [30], see
aiso [16]. Simply speaking, a GA aims at producing near-optimal solutions by letting a set (popu-
lation) of random solutions (individuals) undergo a sequence of unary and binary transformations
governed by a selection scheme biased towards high-quality solutions. The solutions manipulated
by a GA are usually represented as binary strings, e.g. a binary number or a vector of such numbers.
The transformations are applied to the population by three simple operators: selection, mutation,
and crossover. The effect of the operators is that implicitely good properties are identified and
combined into new individuals of a new population which hopefully has the property that the

best solution and the average value of the solutions are better than in previous populations. This
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Figure 2: A genetic algorithm

t :0 0; {t is the generation counter)
initialize P(t); {P(t) is the population in generation t)
evaluate P(t);
while the stopping criteria are not satisfied do
begin

t :=t+1;
select P(t) from P(t - 1);
recombine P(t);
evaluate P(t);

end;

process is repeated until some stopping criteria are met. Figure 2 shows the outline of a GA.
In the selection step, a copy of an old individual is produced with a probability proportional lo

its fitness value, i.e. better strings probably get more copies. Selection can be realized in a number
of ways; one could adopt the scenario of Goldberg [16] or use deterministic ranking. Besides,
it matters whether the newly recombined offspring compete with the parent solutions or simply
replace them. Recombination consists of crossover and mutation. In order to apply the crossover
operator, the population is randomly partitioned into pairs. Next, for each pair, crossover is applied
with a certain probability by randomly choosing a position in the string and exchanging the tails

(defined as the substring starting at the chosen position) of the two strings. The mutation operator
which makes random changes to single elements of a string only plays a secondary role; its main
purpose is to maintain diversity in the population.

Compared to standard heuristics, for instance for the traveling salesman problem "genetic algo-
rithms are not well suited for fine-tuning structures which are very close to optimal solutions" (18].
However, it is often easy to extend a GA to incorportate (local search) improvement operators
in the evaluation step. The resulting algorithm has been called genetic local search heuristic; in
case of the traveling salesman problem we refer to the papers of Ulder et al. [331 and Kolen and

Pesch [21].
In order to apply a GA to an optimization problem, solutions must be encoded in a format that

can be manipulated by the GA. The traditional GA based on a binary string representation of a
solution is often unsuitable for combinatorial optimization problems because it is very difficult to
represent a solution in such a way that the substrings have a meaningful interpretation. Choosing
a more natural representation, however, involves more intricate recombination operators to ensure
that the offspring is feasible; for an example see the crossover operators developed for the JSP by
Aarts et al. [1] and Nakano and Yamada (28].

The underlying idea of the GA described in this paper is to use the genetic information to guide
a heuristic which finds a starting solution for the JSP. The GA thus serves as a meta-heuristic which

produces a sequence of decision rules that direct another algorithm. The output of this algorithm
can then be improved by a local search procedure, and the improved solution is finally inserted
into the GA population again. Using the strings of a GA to guide a scheduling heuristic has first
been suggested by Davis (7]. Applications of a GA to the JSP have been described in [28, 9, 34].

Before we take a closer look at the GA itself, let us briefly introduce the algorithm of Giffler and

Thompson [11], which can be considered as a common basis of all priority rule based heuristics
for the JSP. The procedure can generate all active and hence also all optimal schedules. The
algorithm, which is outlined in figure 3, iteratively assigns operations from the set Q of unscheduled
operations to machines. In the description in figure 3, ri and c, denote the earliest possible start
and completion time, respectively, of operation i.

In the first step of each iteration, the machine on which the next operation has to be scheduled
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Figure 3: The algorithm of Giffler and Thompson

Q := (,.,N);
repeat

among all unscheduled operations in Q let j" be the one with smallest com-
pletion time, i.e. cj. = min ýj E Q}; let m" denote the machine j* has to be
processed on;

randomly choose an operation i from the conflict set C = {j E
QIj has to be processed on machine m" and ri < ci.);

Q := Q - {i}; modify ri and ci for all operations j E Q;

until Q = 0;

is chosen in such a way, that only active schedules will be generated (see [11]). In the second step.
conflicts, i.e. operations competing for the same machine, are resolved randomly. In priority rule
based heuristics, an operation from the conflict set C is selected according to a priority rule rather
than randomly, for instance "choose the operation with the smallest processing time".

Using the Giffler/Thompson algorithm within the framework of a GA is straightforward. The
random choice of an operation from the conflict set can be replaced with a choice based on a
decision rule, where either the rule itself or the information used within the rule is supplied by a
GA. For example, as described in [9], a GA can manipulate strings of priority rules that are then
evaluated by using them in the iterations of the Giffler/Thompson algorithm.

Here, we let the GA manipulate the information to be used in a decision rule. An individual
member of the population corresponds to a job shop schedule; it is a string of n entries, where
n is the number of operations in the problem instance. An entry i represents the starting time
ti of operation i in the schedule. Because the vector of starting times can easily be stored in the
traditional form of a binary string, the standard crossover and mutation operators can be applied.
A newly recombined string is evaluated by using it as input for guiding the Giffler/Thompson
algorithm. Instead of randomly picking an operation from the conflict set C, the choice is based
on the string information that is used in the following 'earliest starting time' rule:

Choose the operation i? in the conflict set C for which ti. = min {tili E C}.

Yamada and Nakano (34] have independently described a crossover operator that is based on the
same genetic string representation. During crossover, the schedules of the individuals to be crossed
are used to guide the Giffler/Thompson algorithm; the random choice of an operation from the
conflict set is replaced by the following decision sequence:

1. Apply mutation with a small probability by randomly choosing an operation from the conflict
set.

2. If there was no mutation then randomly (with equal probability) select one of the two parents
to be crossed and choose the operation P in the conflict set C for which ti. = min mti Ii E C),
where t, denotes the starting time of operation i in the selected parent's schedule.

5 Computational Results

The GA with local variable depth search has been implemented in C and tested on a Sun SPARC-
station IPX. We have used Grefenstette's general purpose genetic search system GENESIS [17] for
the GA part of our algorithm. Limited initial tests have been performed using the three famous
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problem instances introduced by Fisher and Thompson in 1963 [10] which have since then served
as a test for almost every algorithm for the JSP. We have tested both the standard crossover
where the resulting individual string serves for guiding the Giffler/Thompson algorithm and the
Giffler/Thompson crossover of Yamada and Nakano; both versions of the algorithm have given
similar results. The algorithm has been run five times on each problem instance, and all instances
have been solved to optimality within a G-PU time of ten minutes for a single run. While the 6 x 6
problem and the 5 x 20 problem are relatively easy, it is quite remarkable that the algorithm has
always solved the notoriously difficult 10 x 10 instance.

In our tests, we have used the following GA parameters: a crossover rate of 0.8, no mutation, a
generation gap of 1 and a window size of 5 (see [17]), an elitist strategy, where the best individual
of a generation always survives reproduction, and an improvement probability of 0.2, meaning that
on average 20% of the newly recombined individuals are improved by the local search procedure;
this parameter has been selected after a few experiments and it seems possible that it can be
improved. It is likely that the look-ahead depth JEl, the cardinality of the edge set, used in the
variable depth search could be optimized; in our experiments, the optimal depth d* has usually
been reached after reversing only a small fraction of the total number of disjuncive edges. Since
the control parameters have not been fine-tuned, we suspect that the efficiency of our algorithm
could still be increased by the 'tender loving care factor'.

Because our intial tests have been limited to a small number of experiments with only three
problem instances, the results are not yet very conclusive, so great care needs to be taken when
comparing them to the results obtained by applying other generally applicable approximation
techniques to the JSP as described in [25, 32, 22, 1. 8, 28, 34]. We would just like to remark
that the results and running times indicate that our algorithm is at least competitive. When
compared to modern exact methods and tailored approximation methods for the JSP [2, 6, 3, 5],
the running times of the algorithm seem relatively high. However, these methods are substantially
more involved than the algorithm described here, and extending them to modified versions of the
problem is not easy.

6 Conclusions

We have presented a genetic algorithm that guides the Giffler/Thompson heuristic for building
active schedules which are then improved by a variable depth search procedure. The algorithm
which is comprised of quite simple building blocks has solved the notoriously difficult 10 x 10
problem instance of Fisher and Thompson to optimality.

The work described in this paper will be extended in several directions. Firstly, more conclusive
computational results will be produced by applying the algorithm to a larger suite of standard test
problems and by comparing its results to those obtained by applying the individual components
separately. Secondly, more sophisticated search neighbourhood structures as described in [8] might
be used, and thirdly, the variable depth search technique could be replaced with tabu search as
described in [12, 13, 8] for comparing the two methods.
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1. Introduction.

Nonlinear Programming (NLP) algorithms can be classified
into algorithms that generate a sequence of feasible points and
algorithms where the intermediate points in general are infea-
sible. The first class, called feasible path methods, can often
be made very reliable because they work with feasible points.
However, they require a method for generating an initial feasible
point.

This paper describes a new algorithm for finding an initial
feasible point In connection with the Generalized Reduced Gra-
dient (GRG) algorithm (Abadie and Carpentier, 1969), and in
particular in the large sparse GRG algorithm CONOPT, (Drud, 1985
and 1992). The algorithm is based on ideas from Crash procedures
in Linear Programming (LP) with adjustments that take into
account the special features of nonlinear models.

The paper is organized as follows: Section 2 defines our
problem and assumptions. Section 3 summarizes traditional methods
used for finding an initial feasible solution in GRG algorithms.
Section 4 describes the proposed crash procedure. Section 5
contains some limited computational experience, and section 6
concludes the paper.

2. Assumptions.

We consider nonlinear programs of the following general
form:

min f(x) (1)
subject to

g(x) = b (2)
and

1 < x < u (3)

where x is the n-vector of decision variables, g is the i-vector
of constraint functions, f is the objective function, b is the
m-vector of right hand sides, and 1 and u are n-vectors of lower
and upper bounds. Some of the bound values may be minus or plus
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infinity. We assume that f and g are defined and have continuous
derivatives for all values of x satisfying the bounds (3).

We assume that there are hundreds or thousands of equations
and variables, and that the Jacobian is sparse. in addition, we
assume that the individual nonlinear functions and their deriva-
tives can be computed independently. This is a reasonable assump-
tion when the model is communicated to the solution algorithm by
a modeling system such as the General Algebraic Modeling System,
GAMS (Brooke et.al., 1988), currently the most widely uised input
generator for CONOPT.

3. The GRG Algorithm and its Phase-1 Procedure.

When the GRG algorithm is described the problem of finding
an initial feasible solution is usually igncred.

Traditionally, the problem of findina •n :ni~ial £easibie
solution has been attacked similar to the wa-7 it -s done in Phase
1 in LP: Artificial variabiis with suitable .ourds are added to
the infeasible equations to yield a ralaxed but feasieia model.
The sum of the artificials is then ainimized, subiect the
equations of the relaxed model. The solution co this -hase-1.
model is either a point in which all artificial variables are
zero, i.e. a feasible solution zo the :rigina.L prcblem, or d
strictly positive local minimum of the sum of infeasibiiii.es in
which case the model is considered jlocaily) infeasible.

The computational cost of this phase-' procedure will depend
on the number of artificial v'ariables -n the initial ooi.nt. i.e.
on the number of infeasible equations, and on zhe size of the
infeasibilities. The procedure may be relatlvely zsow on models
with many small infeasibilities cecause the removal of each
artificial, independent on its initial size, requires at least
one iteration. We have therefore implemented aa initial Paase-1
heuristic in CONOPT to get around this problem. -he hc~uristic
is summarized in Fig. 1.

1. Select a set of basic variables favoring variabDes
away from bounds.

2. Perform a Newton step usinq these basic variables
a Use steplength < 1 if a basic variable otherwise

would exceed a bound
b Change the basis of the critical basic -,ariable

is at bound
c If the iterations do not converge due to non-

linearities then
- Change the basis or
- Remove "bad" equations from the Newton process

3. When the "good" equations are feasible, add artifi-
cials to the "bad" equations and minimize the sum
of artificials using the standard GRG procedure.

Figure 1: The Phase-1 heuristic in CONOPT.
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W.en iaany variables have good initial values the heuristic
will ba ahiem 'c aplect a good basis with many variables away from
their ttcunao _:-nd a feasible solution can be found very quickly,
essenrilally 4ith the speed of a Newton procedure.

tojavc-r. there are-several disadvantages. If there are few
variau)ais ,;v Zrom bounds in the initial point then it is
•fif.cu -- ' .nd a good basis and the procedure may use many

.-Ceraitions before it gives up and switches to the
2ur ! mz.m.~zation of artificials. Even worse, the procedure

oeA '-z.: -,• ': ,•11 with the way many model builders define
. ". :.nmportant or critical variables are assigned

. . . wihile unimportant variables are left un-
-• - ;Q....es with "good" values, i.e. those away from

uon .. be selected as basic variables and changed
dAurin.r t• :.•.itiA. -Crations, while variables with "bad" values,

.;a"- , -re kept unchanged.

. .:, P systems have a so-called crash procedure
�t nt• - find an initial basis. The purpose is,
wiar " z -a o : find a point with few artificial variables

n "ze - 3 r_ [•f,-ial point for the Phase-i LP.

.7nod ,ies-=_ r..on of crash procedures can be found in
(Cau•. -nd rZe:iL, *.7C',. One of the procedures advocated in this

o n" simple principles:

S.... n., variables into almost triangular form.
1. Siý.re •he .o•ati.n. •ne by one in this order, keeping the

'ariab.'sea f e'.:-aus equations fixed.
ar. an.uatri is [:,feasible, solve a larger subproblem

ivolviiz; .some of "-he -revious equations. If still infeasible,
-.. t i•:F-i1. variable.

,asily be generaLized to nonlinear equa-
i ;c-, almost triangular form is independent

:-: .. ~ ...... -; : "nives the solution of one equation at a
,. : . -n.n b-p- j . b.eneralized to nonlinear equations by

sZ)..i•_ t .•,olution with an iterative procedure
". c:•'ciO.. .tep 3 involves the solution of sets
Y- •aeVai --rVons. *.%7 tave not yet implemented this step, but

a on o' ;evtnrz ,,erhod can also be used here.

9r •2derl.c _'Gould and Reid's paper is based on the P3
&rc~ccc",r• ain :}•ilan and Rarick, 1971). It can also be imple-
nent,-id .-n a siiqhtlv dif.Ferent way as follows:

1. Comnut.ý -oi: count.s as the number of nonzero Jacobian elements
.r each rcw. Cclumns with fixed variables are excluded.

2. there are no rows iett, Stop. Otherwise, find RCmin, the
.7inima! row count.

3. RCmin - 0: 3elect the row(s) with row count 0, remove the
row(:F) from Zurt.her consideration, and go to 2.
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4. RCmin - 1: Select a row with row count 1 and its corresponding
column, remove the row and column from the Jacobian, update
row counts, and go to 2.

5. RCmin > 1: Select a row with row count RCmin and its corres-
ponding columns, remove the row and columns from the Jacobian,
update row counts, and go to 2.

The order in which the rows and columns are selected defines
their order in the almost triangular form.

The ordering procedure is not well defined in the selection
in step 4 and 5. Builders of LP models will usually not provide
initial values and the selection is therefore only based on the
sparsety structure of the LP matrix.

The situation is quite different for nonlinear models. As
a ; esult o) the sequential solution procedure some variables will
be kept fixed, while the remaining variables will be computed as
functions of these fixed variables and of variables computed
earlier in the sequential process. We should therefore try to
order the variables and equations such that fixed variables have
"good" initial values, while the equations preferably are solved
with respect to variables without a "good" initial value.

The freedom in selecting variables to keep fixed appear only
when RCmin > 1 in step 4 above. In the following we will discuss
how we determine whether an initial value is "good", and how this
influences the ordering. We will start with a small example.

xx

Figure 2: The Jacobian Structure of a Small Model.

Fig. 2 shows the structure of the Jacobian of a model with
four variables, three equations, and RCmin = 2. If any one of the
four variables is fixed, the three equations can be solved recur-
sively for the remaining three variables.

Let •(x)) denote the solution for xi fixed and let X be a
vector of initial values. Depending on which of the four
variables we fix we can compute four initial points: X(Xl),
x(X 2 ), X(X3 ), and X(X ). Note that some of these points may be
infeasible because of bounds on the variables. Also note that if
xi is fixed then the initial values of the other variables are
ignored, except as initial points in the solution process.

Our problem is to select one of these four points without
actually evaluating them all, i.e. from X only. A number of
characteristics of the different points may help us in the
selection:
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A If Xt has a "good" initial value then X(Xi) will be a "good"
solu ion.

B User supplied initial values are likely to be "better" than
default initial values.

C If an equation is feasible, the variables appearing in it are
more likely to have "good" values.

D If x. and x. are the only variables in an equation and this
equation is feasible then X(Xi) = X(Xj).

We will in the following separate the variables into two
groups: variables with default initial values and variables with
defined initial values. The definition will depend on how the
model is communicated to CONOPT. When the model comes from GAMS
zero projected on the bounds is considered a default initial
value and other values are defined. Variables with defined ini-
tial values will in general be considered "better" that variables
with default initial values.

We will also separate the equations into feasible and infea-
sible constraints. An initial value that appears in a feasible
constraint will in general be considered "better" than an initial
value that appears in an infeasible constraint. If an infeasibi-
lity can be repaired by adjusting a variable with default initial
value the default variable could be an uninitialized intermediate
variable, and the infeasibility is not considered to be bad.

Based on these considerations we select a "best" row with
row count = RCmin whenever RCmin > 1. The selection is done by
giving priorities from I to 6 to the candidate rows and selecting
a row with the smallest priority. The priorities are defined as
follows:

1. Feasible with at least 2 defined vari-
ables. Since the equation is feasible the
defined values seem to be "good". Select
the variable with the largest Jacobian as
basic.

2. Infeasible with 1 default variables that
can be changed to satisfy the equation.
The defined values seem to be reasonable.
Select the default variable as basic and
solve the equation w.r.t this variable.

3. Feasible with 1 defined variable. Since
the equation is feasible the defined value
seem to be "good". Select the defined
variable as basic.
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4. Infeasible with at least 2 default vari-
ables that both can be changed to satisfy
the equation. The equation can be made
feasible, but the solution depends onwhich variable is changed. We select the
variable with the largest pivot to be
changed to minimize the absolute change.

5. Feasible with only default values. Since
all values are default the feasibility
seems to be accidental. Select largest
pivot as basic.

6. Infeasible. No single variable can be
changed to make the equation feasible.
Select the variable that will reduce
infeasibility the most.

Whenever a row is selected we try to make it feasible
immediately. The updated values of the variables are then used
to evaluate feasibility during the selection of the next row.
This is in contrast to the LP environment where the logical
ordering is done before the solution process is started.

When RCmin = 1 we must select a particular row with rcw
count one. If each row has its own column then the solution is
independent of the order in which the rows are selected. However,
if a potential pivot column intersects more than one candidate
row the solution will depend on which row is selected. In this
case we try to minimize the sum of infeasibilities in the remai-
ning rows, and the row selection is similar to the CHUZR proce-
dure in Rarick's Phase-1 procedure for LP.

Many equations will be feasible and we will have a basic
variable in most equations after the procedure outlined above has
been used. However, there may still be some equations without a
basic variable: Equations selected when RCmin = 0, and equations
that cannot be made feasible.

The basis can be completed with artificial variables and the
traditional phase-1 procedure can be applied to minimize the sum
of the artificials. Alternatively, we may select the missing
basic variables from the variables away from bounds and use the
heuristic in Fig. 1.
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5. Computational Experience.

A set of tables with computational comparisons is available
from the author. We will here summarize some numbers from a
medium sized 8-period refinary model. The model has 1793 vari-
ables of which 1464 have.defined initial values. The models 1593
equations are divided onto 95 pre-triangular equations that can
be solved recursively before the optimization and 2 post-trian-
gular equations that can be collapsed into the objective func-
tion. Of the remaining 1496 equations 1199 (80%) are made
feasible with a basic variable by the crash procedure while 297
equations are not assigned a basic variable initially.

The sum of infeasibilities is initially 4844.6. After
solving the 95 pre-triangular equations and removing the 2 post-
triangular equations there are 165 infeasible equations and the
sum of infeasibilities is 4772.6. The crash procedure produces
a point with only 30 Infeasible equations (a reduction of 82%)
anad a sum of infeasibilities of 33.14 (a reduction of 99.3%).

The original feasibility heuristic mentioned in Fig. 1
including the following ordinary phase-1 procedure required 1165
iterations and 582 seconds to find a feasible solution and the
overall optimization required 2596 iterations and 1698 seconds.
The crash procedure followed by the heuristic required 246 itera-
tions and 125 seconds to find a feasible solution (78% saving)
and 1669 iterations and 1139 seconds to find the optimal solution
(32% saving). The crash procedure followed by a straight minimi-
zation of artificials required 613 iterations and 219 seconds to
find a feasible solution (62% saving) and 2269 iterations and
1591 seconds to find the optimal solution (6% saving).

The saving on other models vary considerable, but is is
positive on almost all models. There is also considerable varia-
tion between the options for finishing the basis -- the old
feasibility heuristic or minimization of artificials.

One interesting result is that some difficult models that
CONOPT declared infeasible before now prove to be feasible. The
reason seems to be that the crash procedure moves many variables
with default initial values away from their bounds or from zero,
resulting in a better behaved point that is further away from
any singularities.

6. Conclusions.

Although the computational testing is still ongoing we can
already conclude that the new crash procedure is very promising.
Given a few good initial values we will on most models be able
to reduce the time to find an initial feasible solution. The
initial feasible solution will often be better which reduces the
following optimization time. And we seem to be able to solve more
difficult models that could not be solved before.

The more intelligent use of initial values may mean that it
is no longer necessary to supply initial values for many inter-
mediate variables. This simplifies model construction and may
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incourage model builders to concentrate on essential initial
values. User specifications ot the quality of initial values
could enhance the procedure.

More work is still needed, in particular on:
- improving the selection- of variables to fix, e.g. based on

information from several equations and on the influence on
the objective,

- completing the basis after the crash procedure, and
- limited backtracking when equations are infeasible.
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1 Introduction

Structural optimization has become an increasingly important tool in the design process, due to
the continuously increasing demands on technical systems and their components. Because of an
extended application of structural optimization techniques to real, industrial problems, the portion
of so-called large scale problems increases accordingly. The latter problems are characterized by a
high demand on computer resources (storage capacity, calculation time) within the solution pro-
cess. Various decomposition techniques have been developed in order to efficiently solve such large
scale problems [Wis7l, Him73]. Parallel processing means a computational decomposition of a task
onto different processors or computer nodes, and therefore it is also a very general decomposition
approach. Here, the solution of shape optimization problems of complex shell structures on a par-
allel computer system will be presented. As an application we have chosen the shape optimization
of an automotive wheel with respect to several load cases.

2 Treatment of shape optimization problems

The mathematical formulation of shape optimization problems can be written as follows:

peR~al= Min{FfRk(f-a)] Rk(f*) E G) I

G = {Rk(f) E R3 I H(Rk(+fo)J = 0,

G(Rk(f°)I >_ 0
RkI 5 Rk < R&"4.

with

F : vector of objective functionals,
H,G : equality and inequality constraint functionals,
Rh : shape functions,
fa :GAUssian parameters,
RhI, Rk: lower and upper bounds for the shape functions,
G set of feasible shape functions.



159

The shape optimization problems formulated in (1) can be solved by means of indirect and direct
methods. Indirect procedures derive necessary conditions for the optimal shape using variational
principles and, subsequently, solve the resulting differential equations - generally by approxima-
tion methods. When a direct solution method is applied, the shape optimization problem (1) is
transformed into a multicriteria parameter optimization problem using approach functions with
free parameters k(ta,zk). Especially pirametrical spline functions known from the field of CAD
[Boe84J proved to be highly efficient for various applications [Bra84]. The obtained multicriteria
formulation is subsequently transformed by means of preference strategies into a scalar parameter
optimization problem which can finally be solved by any Mathematical Programming algorithm
(MP-algorithm).

Structural optimization problems can be solved by an optimization procedure following the
Three-Columns-Concept [Esc9lj. The three columns are the optimization algorithms, the struc-
tural analysis modules and the optimization model. All moduls can be chosen according to the
problem formulation. The direct optimization strategy is realized in the design model (Fig•. I).
The approach functions are chosen problem-dependent from an extensive library.

Dais Pepht lra I

-- ------------------ --

l~~~ ~~ A-. -pM

Figure 1: Optimization loop for shape optimization problems

3 Decomposition

The large-scale problems of type (I) occuring with the optimization of real-life technical systems
require a high storage capacity and extensive calculation times. The efficient solution of such
problems by means of the available resources (storage capacity/computation time) calls for the
application of decomposition techniques.

Fig. 2 shows the potential decomposition approaches for problems in structural optimization.
The decomposition methods usually employ several of the depicted decomposition approaches.
While model decomposition mainly aims at reducing the required computer storage, the com-

putational decomposition intends to reduce the computation time required for the solution.
The term structural decomposition means partitioning the state vector u and the corresponding
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Figure 2: Clas-jiication of decomposition approaches in the field of structural optimization

state cquatior.s P into us subvectors,

This partitioning can be done according to several substructures [Bat76, Guy65] or according to
different disciplines. If the structural subproblems are coupled with each other - this is in most
cases true - a coordination procedure has to be used.

Decomoosition of the optimization model requires the partitioning of the design variables x
and/or the constraints h, g into subvectors,

z, hj, g ==* [ZZ2....,s], [h,,h2 †... ;•s]' [g'g", 9 "gs]

After solving the subproblems independently, the solutions of the subsystems must be coordi.
nated. The coordination and the concurrent subsystem optimizations form a iterative process.
Methods using this approach are, for example, the DANTZIG-WOLFE-decomposition (Dan60 for
large linear optimization problems, Multilevel-Methods for hierarchically structured systems (e.g.
LWis7l, Las/O] or ior inon-hierarchical systems (e.g. [Blo90, Wu92]), and methods based upon a
substructuring (e.g. jKir72, Bre89J.

:f a -uitable parallel computer equipment is available, the computational decomposition, which
means nothing else than a parallel or distributed execution of independent calculation tasks can
Ie applied. Within the process of ontimization, the sensitivity analysis is a subtask suitable for
parallelization since the computation of the partial derivatives with regard to the design variables
are uncoupled processes and can therefore be parallelized. In many cases, the parallelization is
carried out in combination with a model decomposition (e.g. in combination with substructuring
[Top9l, EIS91]). The computations in the subsystem level are then independent of each other and
can be parallehized. In order to quantitatively evaluate the gain achieved by parallelization, the
so-called speed-up S is introduced:

s =(2)

where Teeq denotes the required calculation time on ope processor and Tn the calculation time on
n processors.

For the parallelization a transputer system consisting of 20 transputers (T800) is available (Fig.
3). The transputers are arranged in an array and their local storage capacities ranges between IMB
and 8MB. The definition of the processes, the communication between them, and the allocation of
the processors is carried out by means of the declaration language CDL (Component Declaration

Language) under the operating system HELIOS [NN90]. The topology of the processes can be
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Figure 3: Parallel computing environment

defined independently from the hardware topology.
In the present work a parallel substructure technique and the parallel sensitivity analysis is

employed for the solution of the shape optimization problems. A decomposition of the optimization
model is not carried out.

a) Optimization using parallel substructuring:
Substructuring is commonly seen as the classical (static) decomposition technique for the structural
analysis of complex components. Reduced subsystem matrices are calculated separately for each
substructure, and these matrices are coupled at the main system level. After determining the state
variables at the boundaries (coupling nodes) of the substructures, the local (internal) ones can
be computed - again separately for each subsystem. Fig. 4a shows the flowchart of the parallel
structural analysis realized here, based upon the substructuring, where the computations of the
main and of the subsystems are carried out on an own processor each. Since the main system
processor is not employed during the subsystem computations, one subsystem is treated on the
main processor. The described procedure is not limited to the application of a special analysis
program at the subsystem level, but this analysis program must be able to create reduced stiffness
matrices and consider prescribed displacements.

The implementation of the above procedure on the transputer system follows the master-slave-
concept. In this concept a process called master controls and coordinates a set of subsequent
slave processes. The program representing the slave contains all modules required for the various

calculation tasks at the subsystem level (Fig. 4a). Additionally, it possesses a local database
which stores - even for several structural models - the necessary control data. This guarantees a
minimal data transfer during optimization because the updated geometry and the resulting state
variables have to be transfered only. The master process contains the complete optimization loop
including the routines for subsystem calculations, because one subsystem is also analyzed by the
master process. The necessary system-calls for the purpose of communication are carried out by
a small set of hardware.independent modules only, which reduces the effort when this concept is
implemented on another computer system.

b) Parallel sensitivity analysis:
The sensitivity analysis is a very time-consuming subtask within the optimization process. It
requires the calculation of partial derivatives of the objectives and constraints with respect to the
design variables (Of/lz,, Og/lz 1 , Oh/Ox,). Here, we approximate them by finite differences (first
order differences). The approximation of the first derivative of an arbitrary function F(c) with
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respect to z, using the forward difference is:

S== F(: +A4), = (ro,,.. .,xo, + Ax,,... ,Zoj). (3)

As shown in (3), one needs as many functional evaluations as defined dlesign variables n. One
functional evaluation means one pass of the optimization loop (Fig. 1). Since the functional
evaluations are independent from each other, the sensitivity analysis can be parallel(zed. In contrast
to the decomposition method described in a), this method only reduces the required computer
time but not the required computer memory. Fig. 4b depicts one iteration with parallel sensitivity

analysis. The optimal load balance of the processors can be obtained, if the condition

(n+ 1)/(m + 1) E Z (4)

is fulfilled.
The implementation on the transputer system is also done according to the master-slave-

concept. In the master process all routines or modules which are necessary fbr the entire opti-
mization are included. Thus, the master process is executable even without associate processors
for sensitivity analysis. In contrast to the master, the slave process consists of those routines which
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are necessary for the pass of the optimization loop (for instance, no optimization algorithm is
included), and it has a local data base.

4 Application: Optimal layout of an automotive wheel

The automotive wheel to be optimized will be considered as a branched shell of revolution (unsym-
metrical details as vent holes are not regarded). Fig. 5 shows the initial design of this wheel and
one of the considered load cases (rolling bench test). In addition to the load case rolling bench test,
the load case rotating bending test will be considered in the structural model. The latter load case
is relevant for the design of the disk and for the connection of rim and disk. The degrees of freedom

p3 P.3

'• '~P =Po" cos( •L

wheeldisk

Figure 5: Initial design of the automotive wheel including a description of the load case rolling
bench test

for finding the optimal design are the thicknesses of rim and disk (each constant), the meridional
shape of the disk and the meridional shape of the centrepart of the rim (Fig. 5). For the description
of the meridional shapes of the disk and the rim the approach functions "B-Spline (k = 3)" and
"Coupled circular arc/straight lines" are used. The thicknesses and 10 control points of the shape
functions are chosen as design variables. The weight is defined as the objective function and stress
and deformation constraints as well as shape constraints are considered. Fig. 6 shows the optimal
design of the automotive wheel for the given optimization model. The weight of the optimal design
is 7.02kg which means a weight reduction of more than 30% in comparison to the feasible initial
design (10.17kg, obtained by pure sizing). Then, the shape optimization problem of the wheel is
solved by means of the decomposition methods described in the section 3.

Method 1: The parallel sensitivity analysis is applied. For that purpose, 0 to 12 associate pro-
cessors will be used successively. Thus, we cover the whole range from sequential up to full parallel
sensitivity analysis.
Method 2: Besides the parallelization of the sensitivity analysis the structural model will decom-
posed and analyzed by means of parallel substructuring. For this purpose, the wheel is cut off
at the branch and partitioned into three substructures. Using this method the needed computer



164

r

Figure 6: Optimal design W=7.02kg

memory is reduced in addition to the reduction of the computer time. The assignment of proces-
sors to the substructure processes (slaves) is fixed while we use variable numbers of processors for
the sensitivity analysis (0 to 4 associate processors). Thus, for this method we use from 3 to 15
processors.
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Figure 7: Speed-Up and efficiencies for method 1 and method 2

As shown in Fig. 7a, we save considerable computational time with both methods. For the
method 2, the saving in computational time is less than for method 1 caused by the greater portion
of sequential computations during the substructuring. For the valuation of these two methods how-
ever, one has to take into account that method 2 saves computation time and computer memory.
The efficiency (efficiency=speed-up/number of used processors) is a mean value for the utilization
of the processors. Concerning the efficiency, method 1 is also better than method 2. The non-
monotonous course of the efficiencies in Fig. 7b is caused by the violation of condition (4). (except
for 0 or 12 associated processors).



165

References

[Bat76] BATHE, K.; WILSON, E.L.: Numerical Methods in Finite Element Analysis. Prentice
Hall, Inc., Englewood Cliffs, New Jersey, USA,1976.

[Blo90J BLOEBAUM, C.L.; HAJELA, P.-; SOBIESZCZANSKI-S,';BIESKI, J.: Non-Hierarchic Sys-
tem Decomposition in Struc'ural Design. Third Air Force/NASA proc of the Symp ,sium
on Recent Advances in Mul idisciplinary Analyýis and Optiro;ization, Sar. Francisco. CA
1990.

[Boe84] BOEHM, W., FARIN, G ; KAHMANN, J.: A survey of curve and surface methods i'
CAGD. Computer Aided Geometric Design 1 ('9-4), 60.

[Bra84J BRAIBANT, V ; FLEURY, C.: Shape optimal de:ign using B-splines Comput. Meths.
Appl. Mech. Engrg. 44 (:984), 2''."267.

[Bre89] BREMICKER, M.; ESCHENAUER, H.A.: Application of a Decomposition Technique 'or
Treating a Shape Optim;zation Problem. ,.dvances in D sign Au omation Vol. 1I, ASME
Pub. DE-Vol 192, 1-6, 1989.

[Dan60] DANTZIG, G.B.; WOLFE, P.: Decomposition Principle for Linear Programs. Operation
Research 8, 101 111, 1960.

[EIS91] EL-SAYED, M.E.M.; HSiUNG, C.-K.: Comparison between Structural and Computa-
tional Decomposition in Parallel Processing of Design Optimization. Advances in Design
Automation, Vol. L, ASME Pub. DE-Vol. 32-1, 277-280, 1991.

[Esc91] ESCIIENAUER. H.A.; WEINERT, M.: Structural Optin iza.ion Techniques as a Mathe-
matical Tool for Finding Optimal Shap,- of Co nplex Shell Structrrs To appea 1992
in the Proceedings of the Conference of Nonsmooth Optimization, Er'ce, Italy, 1991.

[Guy65] GUYAN, R.J.: Reduction of Stiffness and Mass Matrices. AIAA Journal, Vol 3, No. 4,
1965.

[Him73] HIMMELBLAU, D.M. (ed.): Decomposition of Large-Scale Problem". North-Holland,
Amsterdam, 1973.

[Kir72J KIRSCH, U.; REISS, M.; SHAMIR, U.: Optimmni Design by Partitioning into Substuc-
tures. J. Struct. Div. ASCE 98, 249-261, 1972.

[Las701 LASDON, L.S.: Optimization .'heory for Large Systems. MaLi1il1an o., London, 1970.

[NN90) N.N.: The CDL-Guide. Distributed Software Ltd., Bristol, UK. 1990.

[Top9l] TOPPING, B.H.V.; KHAN, A.I.: Parall Computations fr St.uct'.ral Analysis, Re-
Analysis and Optimization. Proceedings of the NATo-Workshop "Opti:.niz. •ion of La, ge
Structural Systems", Berchtesgaden, Germany, October 23-24. 1991

[Wis7l1 WISMEIl, D.A.(ed.): Optimization Methods for ý arge-Scale Systems. M Graw-Hill,
New York, 1971.

[Wu92I Wu, B.C.; AZARM, S.: A reduction method for non-hi rarnhical optimization-basei
design. Proc. of ASME Design Automation Conference, 1992 ýto appear).



On Multidimensional Partitioning
Problemst. Facial Structure and

Applications

C.E. Ferreira M. Gr6tschel A. Martin
R. Weismantel

November 27, 1992

In this talk we deal with a subproblem arising in the design of a main-frame-
computer. This problem can be stated as follows:
Let be given a set N of items and a set M of modules. Each item i E N
has a weight fi. Similarly, with every module k E M a capacity Fk is
associated which represents the area of the module. Moreover, there is given
a list of nets Z = {T 1,.. . ,T,. Each net Tt is a subset of the set of items
which has to be connected via a wire. Finally, every module k E M has a so-
called cut capacity Sk, which restricts the number of nets that may leave this
module. Roughly speaking, the problem we consider consists in finding an
assignment of the items to the modules such that certain technical restrictions
are satisfied and a very complicated objective function is optimized.

The most important constraints are the following:

The sum of the weights of the items that are assigned to one module
must not exceed its capacity.

For every module k E M the following requirement must be satisfied:
The total number of nets that contains an item assigned to k and some
other item assigned to some module I E M \ {k} must be resticted by
the cut capacity Sk of the module.

Let a : N --* M denote some assignment of the items to modules such that
the constraints are satisfied. The objective value of this assignment a is of
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the form
ZKk i ck(a) + A -ec(a).

kEM

Let us first focus on the first term of the objective function, i.e., the internal
cost. 1k is a constant which corresponds to the fabrication cost for module k.
Roughly speaking, the internal cost of some module depend on the number
of wires that must be routed within this particular module. In fact, the
internal costs are a staircase function. This is due to the fact that every
module consits of several layers on which the routing of the wires talkes place.
Depending on the number of wires that must be routed within some module.
a certain number of layers is required. A jump of the stair case fuction occurs
whenever additional layers for some module are necessary, since the number
of wires exceeds a certain threshold. The external cost ec(a) represent the
number of nets running between different modules. The parameter A is an
estimation of the cost for one wire.

From a mathematical point of view this application has the flavour of both
a packing aspect and a multi-partitioning aspect. The packing aspect arises
from the fact that certain items must be assigned to modules such that given
capacities are not exceeded. Similarly, one has to decide which nets are
connected via a wire within which module such that the given cut capacities
are still satisfied. On the other hand, the multi-partitioning aspect is present
as well, since the number of nets connecting items which are assigned to
different modules has a strong impact on the objective function.
We modell this problem as an integer program with linear objective function.
Due to the very complex objective function we obtain a model which involves
several clumsy and technical conditions. Moreover, for practical applications.
the model requires several hundreds of thousands integer variables. Thus, we
decided to study relaxations of this problem. Working in this scheme a first
relaxation consists in the multiple knapsack problem, which can be viewed as
the task of assigning a given set of items to a given set of modules. Here.
we introduce boolean variables xik, i E N, k E M with the interpretation
xik = 1, if item i is assigned to module k and Xik = 0 otherwise. The re-
laxation considers just the assignment of items to modules such that the
correponding area capacity is taken into account. The number of nets run-
ning between different modules as well as the cut capacity of the modules is
completely neglected. The second relaxation extends the multiple knapsack
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model in the sense that nets running between different modules are approxi-
mately taken into account. For every pair of items i,j such that there exists
a net connecting both i and j, we introduce an additional 0/1-variables yij
with the following interpretatio.-: yi, ý= 1 if i and j are assigned to different
modules and yi, = 0, otherwise. Using these variables we estimate the num-
b,.r of nets running between different modules by the number -i,IeN yij. This
yields to a multidimensional graph .-artitioning problem. The last relaxation
we are going to consider improves the approximation of the nets and leads
to a multidimei: ýional partitioning problem in a hypergraph. Rather than
introducing variables yi betwe In pairs of * ems, we associate a variable Ztk

with every module k E M and every net Tt. The variable Zik is set to 1, if a
proper subset of the set of item: Tt is assigned to module k and is set to zero,
otherwise This class of vari bles ena: les us to mootel the cut capacities of
the modules as well as to count the number of nets running between different
modules.
Wi, h each of these relaxations we .issociate a polyhedron whose vertices are
in one to one correspondence to the feasible solutions of the proper model.
Then, solv*ng ocie of the models reduceo to optimizing a linear objective
funct*on over the corresponding polyhe-dron. In order to apply linear pro-
gramm~ng techniques, we need a descr.ption of the polytope by means of
equations and inequalities. Thus, a first :tep in solving these problems via a
polyhedral approach consists a concise study of the underlying polyhedra.
In th's talk .e w'll report on the fac-ai structure of the three relaxations

s well In partit ilar, ,here is a nice relationship between facet-defining
:nequal'tic3 fo. -he three polyhedra.
First. one can prove that every tacet for the multiple knapsack polytope
defines a facet "or the multidimensional graph partitioning polyhedron. Thus,
the faciJl struc.ure J tlhe multiple knapsack polytope is completely inherited
by the muLipartitioning graph polyhedron. Similarly, valid inequalities for
the polytope associated with the second relaxation can be modified such
that they a,-e valid for an appropriate multidimensional hypergraph polytope.
Unfortunately, not every facet for the multidimensional graph partitioning
poly'.ope is inherited by the corresponding hypergraph polytope. Yet, there
are several examples where we may resort to facet-defining inequalities for
the multidimensional graph partitioning polytope, and by modifying them,
we obtain facets for Lhe hypergraph polytope. An example of this kind is the
so-called cycle inequality which we will discuss in the talk.
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We conclude by giving some remarks on the relationship between the third
relaxation and the original problem. Here, it turns out that the third re-
laxation takes the original side constraints into account. The only difference
between the two of them is that the objective function in the hypergraph
model is simplified and provides-just a heuristic estimate of what is really to
be minimized. However, if one is able to handle the multipartitioning hyper-
graph polytope from a theoretical as well as from a practical point of view.
one could start with some objective function and optimize over this poly-
tope. If the solution is feasible for the original model we stop. Otherwise, we
modify the estimate of the objective function for the hypergraph model in a
lagrangean fashion and repeat this process until we terminate with a globally
feasible solution. Surely, the solution provided that way is not necessarily
optimal for the original problem. However the objective function is somehow
related to the original one and thus, an optimal solution to the relaxed modei
that is still feasible for the original one should be not too bad. In particular.
one should expect that it meets the requirements, practioners are interested
in.
At least from our point of view, this type of approach (providing a series
of reasonable relaxations to a very complex problem and handling the re-
laxations theoretically as well as practically) is best what one can expect.
since theoretical and practical progress up to date is still far away from solv-
ing large scale real world problems to optimality, which are as complex as
problems occuring in the design of main frame computers.
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1. Introduction

Spacebome communication antennas are often required to illuminate an ir-

regular coverage region on the earth. To achieve this effectively the radiated

beam is shaped in order to concentrate the power on the region. A shaped

beam also known as a contoured beam can be obtained with an offset

parabolic reflector with multi-feed array shown in figure 1.1. This antenna

generates a set of small element beams. Each element beam is generated by

a feed that radiates towards the reflector and the element beam is the reflect-

ed secondary field. Each feed is a small metal hom which transmits to free

space. The feeds are arranged in an array such that the corresponding ele-

ment beams together cover the region (see figure 1.1). The antenna input is

transformed into feed excitations i.e. input amplitudes and phases by a

beam forming network. Thus the element beams are excited corresponding-

ly and the contoured beam is obtained.

The classical contoured beam optimization problem is then given the anten-

na to adjust the excitations to maximize the power gain within the coverage.

Additionally, isolation regions may be included in which the power level

shall be suppressed. Several procedures have been proposed for this prob-

lem including minmax formulations to maximize the minimum power gain

([1], [2] & [3]).
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Here we shall describe a procedure in which the feed array parameters are

included into the optimization. The shape of an element beam is highly de-

pendent on the feed aperture. Feeds with circular or squared apertures create

a power gain pattern with circular contours. Rectangular feeds leads to elon-

gated element beams (figure 1.2). Because of size, weight and losses it is

desirable to keep the number of feeds as small as possible. A well-fitting

contoured beam can be obtained with a limited number of non-circular ele -

ment beams. The size and position of the corresponding feeds are usually

found by hand. As the number of parameters characterizing the feeds is

large it is likely that a manually adjusted array is far from optimum.

2. Field calculations

The secondary far field from a separate rectangular feed must be calculated

in different far-field directions. The parameters of a rectangular feed are the

aperture dimensions a and b and the position of the aperture centre xf and yf

in the focal plane (Fig. 3.1).

The focal plane coordinates are denoted xfyfzf and the corresponding basis

vectors xf, yf, zf. A unit direction vector is defined by rf =(ufvfwf) =

(xf,yf,zf)/rf,, where rf = (xj +yj +z )'. The radiated electrical field from the

feed can be written as

Ef = A ejkrf- (i'fwf - (xf 'ifUf + Yf 'Yfvf)zf)-f(uf,vf)
rf

where A is a normalization constant, j is the imaginary unit (j2 =-1) and k is

the wave number related to the speed of light c and the frequency v by
A

k=2nv/c. The unit vector yf is either equal to xf or yf depending on the feed

polarization. The function f(ufvf) is the Fourier transform of the aperture

field of the feed denoted hf(xfyf), where a simple model is used
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~os(xyf / b) for -a/2<xt <a/2
hf(xf,yf) = and -b/2 < yf < b/2 (2.2)

otherwise

Next, the magnetic field H radiated from the feed is found from H =rfxEf.

On the reflector surface a current distribution J(x,yz) is induced, calculated

by the so-called physical optics approximation, J(x,yz)=2nxH, where n is

the unit surface normal. The field and currents are here considered to be

functions of the coordinates x,yz of the antenna coordinate system (see

Figure 1. 1). Hereafter the secondary field radiated by the reflector can be

found from ([6])

Efar = ff(J(r)-(J(r). ). )ej+kr' ds (2.3)

A

A

which gives the electrical far field in the direction r. The vector r=-(x,yz) is

the integration variable in the surface integral over the reflector area A. The

quantities of interest are the polarization components eco and ecx obtained

from Efar by the projections eco =Efar" eo and ecx =Efar. e% where eo

and eCX forms the desired polarization basis. (* denotes the complex conju-

gate.)

3. Array topology and minmax formulation

The feeds are mounted with their apertures in the focal plane (figure 1.1).

During the optimization the apertures will vary in size and position. The

feed array parameters cannot, however, vary independently since no aper-

ture overlaps must occur. To avoid a considerable number of linear con-

straints we have chosen an approach where the array must be composed of

a collocation of rows of rectangular apertures (Figure 3.1). Let the feed co-

ordinate system in the focal plane have axes parallel to the aperture edges

and let the rows be organized in the xf-direction. Then all feed of an internal

row must have the same height and yf-coordinate for the aperture center
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whereas the heights of the feeds in the top and bottom row can vary inde-

pendently. All vertical edges of neighbouring feed apertures" in a row must

coincide and all horizontal edges of neighbouring rows must coincide. With

this topology the independent variables are:

- One common height for all feeds in each internal row and individual

heights for the feeds in the bottom and top rows.

- For each row the x f-coordinate of the aperture center of one of the feeds

and individual widths of all feed apertures-

- yf-coordinate of the aperture center of a main reference feed and rotation

of the complete array.

The maximum number of variables that can be used equals N+2R+n l+nR,

where N is the number of feeds, R the number of rows and n 1 and nR the

number of feeds in the bottom and top r-w resp This number may be re-

duced if identical feeds are required. Due to field model limitations bounds

are needed on the aperture dimensions. Let xa E Rna be a vector with the

chosen array variables, n a5 N+ 2 R+n l+nR.

The desired power gain is specified ove- a se, of synthesis stations ade-

quately sampled to define the coverage and isolation regions. Let the com-

plex number eij(xa) denote the far field a- the i'th station of the fth element

beam found as discussed in section 2 excited by unit amplitude and zero

phase. The complex vector ei(xa) C holds the values from the N elements.

Further, let aj denote the j'th complex excitafon where Re(a1) = Ajcos(Phj)

and Imaj = Ajsin(Phj), A and Phi being the j'th excitation amplitude and

phase. The complex excitations are elements of the vector rx • CN. Since the

optimization is performed in real variables we uze xe E R 2N- 1, such that

ccj(xe) = (x2j-.1 + i x2j), j=1,..,N-1 and aN(XC) = (0.2N-I + i 0). Therefore 2N-

1 independent variables are available, since phase is a relative quantity. The

total vector of independent variables is then the concatenation x = Xa//Xe,

x r Rn, n= 2 N-l+na.
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With the above notation the power gains at the station can be expressed as

(.a(xe)'ei(xe) )X.m(xe,)'ei(xe.) )"

PA(X) = , i=l,...,M (3.1)

where M is the total number of stations. (See [3]). For each synthesis sta-

tion a residual function is now defined which is the difference between the

realized gain normalized by the factor Go and a specified relative gain goal

pio, i.e.

fi(x) = wi(pi(x)/Go - pio) (3.2)

where G. should be slightly above the expected peak power gain. The spec-

ified relative power gain is used to express the station levels of the desired

pattern, such that pio 1 for a coverage residual and pio -0 for an isolation

residual. The weights are used to equalize the size of coverage and isolation

residuals. The minmax problem to be solved consist of determining x E Rn

which minimizes the maximum residual -

F(x) = min F(x) = min max Ifi(x)l (3.3)
xe Rn xc Rn 1<i<M

4. Solution of the minmax problem

The problem (3.3) is solved by the approximate gradient version of the gen-

eral minmax method of Madsen [4]. This is an iterative trust region

method. In each iteration the residuals are linearized and the linear model

function is minimized subject to a bound on the solution. The proposed step

is accepted as the next iterant if F decreases. Otherwise the step is repeated

with a reduced bound. To solve the problem on small computers some ad-

ditions were needed. In each step worst and near worst case residuals are

identified and then only these are linearized. Thus the storage needed is re-

duced by approx. 80%. Gradient approximations are obtained by a combi-
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nation of Broyden's rank one formula and differences. The linear model

function is minimized by the exchange method of Powell [5]. In a re-

designed implementation an option for starting with a good guess of the

final set of active linearized residuals defining the solution has been added.

Then, in the non-linear minimax the set of active linearized residuals found

in one step is used as the guess for final set of the next.

5. An example

One of the test cases for the procedure was the Brazilsat Antenna System

discussed by Patel & Chan [21. The requirements were 27 dBi for a high

gain region shown as a polygon on figure 5.2 and 25 dBi for the rest of

Brazil. (dBi is the power level above isotropic level in dB (=I 0loglpil)). The

antenna consists of an 1803 mm offset reflector illuminated by 6 rectangu-

lar feeds as shown in figure 5.1. A total of 97 synthesis stations were used

and the total number of variables was 25. The original array and excitations

were used as initial point for the iteration.

A minmax optimization using only excitations as variables yields 28.61 dBi

and 26.61 dBi for the high and low gain zones resp. (Fig. 5.2). The result

from the optimization with array parameters included is shown in figure

5.3. The power gains are 29.74 dBi and 27.74 dBi for the two zones.

6. Concluding remarks

General methods for non-linear minmax problems have been used success-

fully for contoured beam antenna optimization with the excitations of the

feeds as variables. If the array consists of different sized rectangular feeds

the performance of the antenna can be improved further, if the feed array pa-

rameters are used as variables together with the excitations.
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Abstract:

We study a production management in clothing industry. The model we use is a large
scale linear integer programming problem with a lot of structure. Lagrangean relaxation
method coupled with heuristics yields a good bracketing of optimal solution by dualizing the
state equations. Subgradient technique is used to solve Lagrangean dual, each iteration
reduces to exact solving of knapsack problems.
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1. Introduction

We consider a problem of production management in process industry application. This
problem can be formulated as a large-scale linear integer programming problem strongly
structured.

The paper develops a Lagrangean relaxation technique that successively solves a
sequence of generalized knapsack problems. A near optimal solution is obtained via a
subgradient method coupled with an heuristic. Numerical experiments with real and randomly
generated instances are in progress to validate the approach.

Section 2 deals with a short description of the production system and a deterministic
model formulation. Section 3 describes a suitable strategy for large-scale instances: each
iteration of an ad hoc Lagrangean relaxation reduces to exact solving of small-size knapsack
problems.

2. Model formulation

We study an inventory production management problem in the clothing industry. An
effective production planning system determines the appropriate levels of production and
inventory according to fluctuating demand requirements and minimum costs.

Generally speaking, a manufacturing production system in the clothing industry can be
viewed as a sequence of transformations applied to raw materials to obtain finally a finished
product.

In the formulation, external subsystems such as extraction and transportation of the raw
materials are neglected. Then the process can be subdivised into three subsystems (see
figure ) :

- transformation of the raw materials into raw pieces;
- shaping of the raw pieces into shaped pieces;
- assembling of the intermediate subproducts to provide the finished items.

Each subsystem is characterized by the following decision variables: vector of products,
stocks and demands. We assume that a discrete deterministic model is available and that
external demands of the global system are given ([4],[8]).

Let N denotes the number of items to fabricate, M cardinality of EM set of raw materials

index, J cardinality of Ej references set of elementary pieces forms, L • Ej x EM the number of

intermediate subproducts of transformation and shaping subsystems, T the number of periods
in the planning horizon and k=3 the number of subsystems.

The following underscnpts are also used in the description of the model.
k : index of system (k = 1,2,3);
t :time period (t =1 ... T);
i index of finished product if k=1 (i=1 ,...,N) or of intermediate subproduct if k = 2,3
(i = I...L .

We now introduce vectors of decision variables of the problem:
k k

y= [ yi ]: number of product i to be produced during period t in subsystem k.

k kUt = [ ui,j] • number of storage i during period t in subsystem k.

k k. .Dk = [d,t] "demand of product i during period t in subsystem k (k=2,3)

D = [d]• given external demand of product i during period t.
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The following vectors of data are required for formulation

k= [ ri availability factor of product i of subsystem k during period t.

k kSt = s.]• availability factor of storage i of subsystem k during period t.

k(pt resource production availability of subsystem k during period t.

k
Wt storage of resource availability of subsystem k during period t.

Y[ ]" maximum of production allowed per period for item i of subsystem k.
k k k I•= k

-,•= wt I [ i'l : lower and upper bounds for storage of product i from

subsystem k during period t.
1 k = kCt I ~ J unit production cost over period t for item i of subsystem k.
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Ck = I q,l J unit storage cost over period t for item i of subsystem k.

3k 3k
C1 = [I ,, ] • cost of modifications when fabrication changes from a period to another.

and the matrix Q = (ac):

ai,: number of necessary pieces I to fabricate item i.

The constraints of the problem are either technological or economical. These constraints
and production cost are assumed to be linear. We suppose that the objective function is also

k k
linear according to product (yit), stock (ui,,) and change of activity level from a period to

k kanother (yi,1-yi.- 1 ). Hence the model can oe formulated as the following large-scale integer

linear program with 2(N+3L)T variables and (3N+8L+6)T constraints:

3 T ky C2kuk 3k( k k

min z= t C T +C U; +C! (Yt" .1)
k-li-I

S.t.
kyk k (k-l)

0oyý _ y (k-2)
k k k

Sk Uk < k, (k-3)

k k k

U, = Uo +(YU (k-4)

0-1

2 1
DI = Q Y' (2-6)

Zs 2
D0 = y2 (3-6)

k k 23
yk, uk, ,D,' integer k=1,2,3 t=l,..,T

k k 33The initial conditions Uo and YO are given and set to zero and we assume C, =0.

3 Lagrangean approach

The coupling constraints (2-6) and (3-6) that link the subsystems are used to eliminate
2.3

only the decision variables D . After rearranging terms, the problem can be stated as an

equivalent linear program with 2(N+2L)T variables and (3N+6L+6)T constraints
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3 T k
min N ({F"Y+ C" U, I

k=I t=I
S.t.

k

OSk -U k

k k k
(P) . U• t Ut

I 1 1

U1 = a,(YeDe) (1-5)
0= i

2 2 1 (2-5)U1 = X({Y e" 2Y)B} 25

0=I

3 y3 2
U1 = 0{Y-Yo} (35)

0=1
k t integer k=1,2,3 t=l,..,T

1k 1k 3k 3k 3k
with Ft C1 +Ct -_C,+1 and Cr+.=O

By dualizing the state equations ((k-5), k =1,2,3) with a muliplier V one obtains the
Lagrangean relaxation subproblem :

"3 T 1k k 2k k
min cste + _ 7_. G, Yt + G t U}

k-I I-I
S.t.

k k kR;• Y, -5 (p,

0 5Yk 5- k
(LR(V)) 0 • S1  U k1

k k kSU •lUt

Yt, Uk integer k-1,2,3 t=l,..,T

V1 2,V k_ k, T 1 .
where Vl(V;,V ,V') v -(v i1  cte.- •'V DO

t-I 0-I

T I V.2 D 12 12 T 1 2
,tt1 + ,, =. f

13 13 T ka kt
Gt, Ft + G. V.3

O-t
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Each subproblem (LR(V)) can be decomposed into 6T knapsack problems over period

t, subsystem k and variables yk and Uk. The first 3T subproblems are knapsack problems

with upper bounded variables

k kmin GP' Yt
s.t. k k=1,2,3

([LR1(V)kRY, pt
kk

o _:5 Y , _< -y ,k
k tk

and the 3T other subproblems are knapsack problems with lower and upper bounded

variables

m 2k Uk-min Gýz U,

s.t. k=1,2,3
k k k

([LR2(V)h,) SU -< 't tl..

uk < k -k-4 : t <5 Ut

The corresponding Lagrangean dual given by

(D) [max v(LR(V))
( ) s.t. (V)

where v(.) denotes the optimal value of problem (.), is solved by a subgradient algorithm ([3])
and v(D) is a lower bound of v(P).

4 Preliminary conclusions

This approach is a suitable alternative to the one provided by Soenen ([8]). In his
paper, the size of the model is reduced to (N + 2L)T variables and (2N + 4L+6)T constraints by
using the state equations (k-5) and coupling constraints (2-6)-(3-6) to eliminate the variables

U1,2,3 and D" 2. Then the Dantzig-Wolfe decomposition ([2]) is applied to solve the LP-

relaxation and an integer feasible solution is obtained by rounding the LP-optimal solution.
The author has also suggested to split the problem by creating copies of the original variables

yof the shaping subsystem. He was among the first ones to suggest the idea of variables

splitting and later Guignard and Kim ([6],[7]) formalized this idea to a general mixed-integer
programming problem. But in this case, the subproblems induced by the dualization of the
copy constraint do not reduce to knapsack problems. Though our model has twice more
variables, the approach is attractive when the size increases. First it is well-known that the
bound provided by the Lagrangean dual is generally tighter than the LP one. Secondly, at
each iteration of the subgradient algorithm, the subproblems are knapsack of small-size and
easy to solve exactly. Moreover feasible solutions can be constructed, starting from the
optimal solution of each subproblem, to furnish a bracket of the optimal solution of the initial
problem (P).
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The algorithm was implemented in GAMS 2.25 (General Algebriac Modeling System
[1]) with solvers ZOOM or LAMPS. First numerical experiments show that our approach is
suitable for large-scale instances.
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Abstract

We consider various relaxations and/or decompositions for solving linear integer minimax
problems. The main results concern the comparison of the bounds they provide and necessary
and sufficient conditions to obtain sharper bound or null duality gap with Lagrangean
decomposition.

1 Introduction

Confronted with the problem of minimizing, in integers, the maximum of several
functions, one usually introduces an extra variable, say y, to be minimized, and writes
constraints which force y to be no less than these functions. These new contraints destroy
whatever structure the problem had initially, and render its resolution much harder. One can
obtain lower bounds on the optimal value of y by relaxing these constraints and then optimize
the bound thus obtained. We will consider several relaxations and compare the bounds they
provide. We will also study some specific minmax models and provide preliminary
computational evidence on the quality of the bounds.

In section 2 we show how various relaxations and decompositions compare in terms of
the bound they provide when only the new constraints are dualized. In section 3 we consider a
two-level relaxation scheme, where complicating constraints of the initial structure require
relaxation. An illustration of the main results is provided by an example in section 4.

Notation

We shall use the following notation. Given a constrained optimization problem (). (-) will
denote its continous relaxation, FS(.) its feasible set, OS(.) its optimal set, i.e the set of all its
optimal solutions, and u(.) its optimal value. Co(S) will denote the convex hull of a set S of Rn
and the superscript t transposition.
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2. Minimax constraints dualization

Consider the following linear minmax problem (P)

S rmin max Fi(x)
(P) xes i=l,p --

where S is a discrete subset of Rn and the Fi's ,i = I...,p, linear functions of the form Fi(x) =
fix+gi.

Let us now introduce a new variable 8 to represent the maximum of the p functions Fi(x)
and let us rewrite (P) as

() min {6( Fx+g <5e,xe S1

where F is the pxn matrix (fi]ij.,p, g the vector (gi)i.,lp and e the all one vector (1.1) of RP.
The new constraints Fx+g < Se destroy whatever structure the set S had initially, and render the
resolution of problem (P) much harder.

The first basic results concern the comparison of bounds provided by various relaxations
which are obtained by only dualizing the minimax constraints Fx+g 5 6e.

We introduce the set of multipliers U = { uelUP I u > 0, ui = 1 ) and the maxmin dual
i=1

problem (Q)

[ max min u(Fx+g)
(0) L ue U xE S

As S is not a convex set, the classical minimax inequality holds and we have the following
inequalities

u(P) = min { max { Fi(x) i = 1,..,pI xeS
= min { max { u(Fx + g) I uEU)I xES
Ž max { min ( u(Fx + g) I xeS )I ueU ,= U(Q)

Hence the minimax duality gap a = u(P) - u(Q) is due to the nonconvexity of S. Compactness
and convexity of S are sufficient but not necessary conditions to have a = 0. When S is
compact, arguments based on Lagrangean duality (Geoffrion, [3]) lead to the equivalence
between (0) and the following linear program (P*)

(P) min m 8 1 Fx+g !5 Se, xe Co(S)}(P*) x,6

Therefore the duality gap a can be positive only when the feasible set ( 6 1 Fx+g _< Be, xe Co(S)
has noninteger vertices.

We now compare the optimal value u(Q) with lower bounds of (P) provided by three
different relaxations of the minimax constraints Fx+g < Se.



187

Problem (P) is equivalent to (PO), in which we create multiple copies of 6 as a p-vector z:

(PO) min I tz I Fx+g<z,xeS,z=Ez)
XZ

~1 if j=i+1, i=1 ,...,p-i
where E is a (p,p) cyclic permutation matrix such that:. E 1 if j=1, i=p

We now dualize the copy constraint z=Ez with multiplier u and obtain the Lagrangean
decomposition subproblem

(LD(u)) [ m n {j(u)z I Fx+g < z, xeSL x ,z

where qp is the linear function on RP defined by (p(u) = u(l-E)+n-et and I the identity matrix.
The corresponding Lagrangean dual (LD) is

S[ max V(LD(u))(LD)L uI u

where U(LD(u)) min { ( +u1 - u.i1 )zj I Fix+gi - z1, xeS
i=1

We also define the Lagrangean and the surrogate duals of (P) relative to the minimax
constraints Fx+g< Se:

(LR) max I(LR(u))
(u > 0

where ti(LR(u)) =mini 8 + u(Fx+g-be) I xS}S) = ug + min { (1-ue)b+uFx xES },

and
( max u(SD(u))(SD) L uŽ>

where V(SD(u)) = min (5 1 u(Fx+g) 5 Sue, xES }.

The following theorem states that all the above mentioned duals of (P) provide identical
lower bounds equal to u(Q)

Theoreml U(P) Žt u(Q) = u(LD) = u(SD) = U(LR) 0
To conclude the section, we give sufficient conditions under which the duality gap a

equals zero.

Proposition 2.

Let u" be an extreme point of the convex set U = { ueP I u _ 0, ui = 1} and let h

denote the index such that U*h = 1. If there exists an optimal solution x" of the relaxation
(Q(u*)): min (u*(Fx+g) I xe S } such that: max ((Fx*+g)i =1 ....p)= (Fx*+g)h
then u* e OS(Q), x" e OS(P ) and a = 0. 0
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3. Integer problems with special structure

In the section 2, we have assumed that the relaxed problems max{ fu(x) I x E S ), for
linear functions fu(x) = u(Fx+g), could be solved, at least reasonably easily, so that no
relaxation of the constraints defining S was necessary. In this section, we shall consider cases
for which S contains so-called "complicating" constraints, requiring relaxation of some of the
constraints in S. The bounds may not be as strong as those described above, because of the
two-level relaxation, yet they may still provide one of the best approaches to solve such
problems.

So we consider now the case where the constraint set S can be partitioned into two
subsets S = {x I Ax < b, Cx < d, X E Q ), where Q c •n X Zn-m is a discret subset and Ax_< b
are the complicating constraints. The problem (P) is then equivalent to

E min {5Fx+g<_ Se, Ax:b, Cx:d,xE 0)
I xs

First we compare the bounds obtained by relaxing the minimax constraints Fx+g < 5e
and the complicating constraints Ax !5 b. The following relaxations differ in the way one dualizes
the minimax constraints and the complicating constraints.

Problem (P) is equivalent to problem (Pi), i=1,2,3, in which we introduce multiple copies
of 8 as a p-vector z = (z4, Z2..Zp), and one copy y of x:

(P) [ min {etzIFx+g <z,Ay!_b, Cx_< d,x=y,z=Ez,xeX,yey}
x,y,z

(p 2 ) min { --etz I Fx+g < z, Ax :5 b, Cx 5 d, z = Ez, xEO}

p3) min {S(Fx+g <5 e, Ay!b, Cx< d,x=y,xEX,,yEY}

with Xry = Q.

We dualize all the copy constraints in (P1) and obtain a first Lagrangean dual

(LD ) max U(LDI(u,v))

L U, V
where u(LD 1(u,v)) = min ({o(u)z - vx I Fx+g: z,Cx! ;d, x e X } + min {vy I Ay5 <b, y rt Y)

In (p2 ) we dualize the copy constraints with multiplier u and the complicating constraints
with multiplier w, to obtain the second Lagrangean dual

(2 max u(LD2 (u,w))

w e(LD2)u ,w = 0where u(LD2(u,w)) = -wb + mai {(p(u)z + wax I Fx+g •; z,Cx <_ d , x e
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Finally, in (p3) ,we dualize the copy constraints and the minimax constraints and obtain

the third Lagrartgean dual

(LD3) [ max u(LD3(U,V))
I uŽ ,>0 V

where U(L0 3(u,v)) =ug + min {(1-ue)8 +-(uF - v)x ICx S5d, x E X) + min ( vy I Ay! Sb, y~ Y

We also define the standard Lagrangean dual by relaxing the constraints Fx+g !S 8e and
Ax S b

(L-R) F ax U(LR(u,w))
I uŽa O'wŽOý

where U(LR(u,w)) = -wb+ug+ min ( (1 -ue)8+(uF+ wA)x I Cx !S d,x c:

The next proposition sums up the relationships between all these Lagrangean duals.

Proposition 3 U(LD') = LJ(LD3) and u(LD2) = v(LR) 0

Since (LDI) and (LD3) are equivalent, we will call (LD) this one true Lagrangean
decomposition of (P), and since (LD2) and (L-R) are equivalent, we still simply call (LR) this
Lagrangean relaxation.

To discuss the quality of the lower bounds provided by (LD) and (L-R), we introduce the
LP relaxation of (P) denoted by ( F)

mi [ m 5 16Fx+g :58e, Ax <b, Cx :d, XE CO(U)

The main properties may be summarized as follows:

Theorem 4
(i) u(Q) : i( P ); if (P) has the Integrality Property:

( x IAx 5 b, Cx S d, x e co(Q) )=cof x I Ax!5 b, Cx:5 d, x c- 0)
then u(Q) = tJ(T P.
(ii) If tj is convex, then v(LD) !S u(L-R) .
(iii) If YJ is convex and co(!a) = co(Xy)r&, then u(L-D) ! U( P.

(iv) u.(Q) Ž! max ( u(L-D), v(L-R)) .
(v) If X = Q~ then UIJ(R) Ž! L( P ); if (P) has the partial Integrality Property:

then (LR)= U() .{ x I Cx!5 d, x E co(Q) ) = co( x ICx!5 d, X E Q)l

(vi) If X = tU = Q~ then u(LD) Ž! u(LR); if (P) has the partial Integrality Property:
({x I Ax 5 b, x r= co(fl) }co( x IAxý Sb, x r= Q)

then u(LD) = u(LR).0

Theorem 4 is important for recognizing the cases where Lagrangean Decomposition
could provide tighter bounds than Lagrangean or LP relaxations. This will happen frequently
when X = Y. -!Q and (P) has not the partial Integrality Property ( x IAx !5 b, x e co(!Q) =co( x
IAx:5 b, xE e !).
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The following theorem gives sufficient conditions to obtain uI(LD) equal to U(P) and
generalizes proposition 2.

Theorem 5 Let (u*,v) r OS(LD) and (x*,y*) E OS(LD(u*,v)). If x" = y" then
(i) For any multiplier v Ž 0, U(LD(u*,v)) = U(Q(u*)).

(ii) If u* e OS(Q) then u(LD) =-7U(Q).
(iii) If u* is an extreme point of U and max{(Fx*+g)i Ii =1.p} = (Fx*+g)h where h denotes
the index such that U*h = 1, then x" E OS(P) and U(LD) = u(Q) = u(P). 0

4. Example

The sufficient conditions given above are useful in practice and easy to check. Consider

the following makespan problem (Paxo,) with 2 machines and 2 jobs (see Escudero [1] for a full
description of the problem and also (7,8]):

min max {4x 1+ 3x3 + 4X5 + 4X7, 4X2 + 2X4 +2x6 +3x8 (Fx +g)

s.t.
X1 +x2=1 X3+X4=1 (Ax b)
x I <X5 X3 < x?

X2 5 X6 X4 <X 8

4XI +3X 3 +4X5+4X7 <-a (Cx:d)
4X2 + 2X4 + 2X6 + 3x8 !

xie (0,1) i= 1'....8

The first (resp. second) machine is available a (resp P) units of time, x5 (resp. x6 )
represents the assignment of job type 1 to machine 1 (resp. machine 2) with a potential setup
time of 4 (resp. 2) units of time. Similarly, X7 (resp. x8) represents the assignment of job type 2
to machine 1 (resp. machine 2) with a potentiel setup time of 4 units (resp. 3). Finally xl (resp.
x2) correspond to the assignment of job 1 to machine 1 (resp. machine 2) with processing times
of 4 on both machines. Similary, X3 and X4 play similar roles for job 2, with processing times of 3
and 2 units respectively.

For problem (P 7 ,6) the sufficient conditions of theorem 5 (iii) are satisfied by u*= (1,0),
v*= (4,4,3,4,4,4,4,4) and x*= y* =(0,1,1,0,0,1,1,0). One has u(LD(u*,v'))=7, thus U(P) = u(Q) =

U(LD) = 7 and x* e OS(P).
It is important to notice that alone condition x*=y° of theorem 5 is not sufficient for

optimality as in (Guignard, Kim [4,5,6]). Indeed consider (P 15 ,1 1); it is easy to show that:
* U(P)= 7 and OS(P) ={(0,1'1,0,0,1,1,0)}
S(Q) = u(Q(u = =(, ) which is not an extreme point of U.

UP with u = 7 ~ 7
u(LD) = U(LD(u*,v*)) = U(Q) with v" = u*F = - (12,16,9,8,12,8,12,12); x1 =

(1,0,0,1,1,0,0,1) and x2 = (0,1,0,1,0,1,0,1) are such that (xl,xl) and (x2 ,x2) belong to
OS(LD(u*,v*)), but U(LD) < u(P).
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5. Concluding remarks

We have presented various relaxations and decompositions wich can be applied to
minmax integer programming problems. As an alternative to subgradient optimization, we have
also extend column generation to solve Lagrangean decomposition duals ([2]). This technique
has been applied to the minimization of excess capacity in loading problems and makespan in
flexible manufacturing systems. All the Proofs are contained in ([2]).
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INTRODUCTION
The design of any process system for producing desired products from available raw

materials almost always involves process network synthesis (PNS). A process system is a
network of operating units, each of which transforms a specified number of input materials
with known quality into a specified number of output materials by altering their physical,
chemical, or biological properties. The importance of PNS arises from the fact that essentially
every product of the chemical and allied industries is manufactured by such a network;
moreover, the profitability of the same product from different networks may vary widely.

The MINLP model of PNS contains a large number of binary variables associated with
the operating units. This renders the model difficult to solve by any available method without
exploiting the specific features of process structures and the model. Although its complexity is
exponential, the branch and bound method has the advantages of being independent of an
initial structure; guaranteeing the optimality provided that the bounding algorithm exists; and
being capable of incorporating combinatorial algorithms. Nevertheless, the general branch and
bound method is inefficient in solving the MINLP model of PNS because a large number of
NLP subproblems is generated and the number of free variables is unnecessarily large for each
subproblem, i.e., many of such free variables are associated with operating units that need be
excluded from any feasible solution of this subproblem.

Combinatorial analysis of the MINLP model of PNS and that of feasible process
structures yield mathematical tools for exploiting the unique characteristics of PNS. These
tools can accelerate the branch and bound search for the optimal solution by minimizing the
number of subproblems to be solved and by reducing the size of an individual subproblem
through exclusion of the binary variables and constraints of those operating units that must not
be included in any feasible solution of the subproblem. This algorithm has been validated on
the basis of combinatorial analysis of process structures and has been applied for solving
industrial instances of PNS.
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STRUCTURE REPRESENTATION IN PNS
The simple directed graph is effective in representing structures of general network

problems [I]; however, it is unsuitable for PNS as demonstrated by simple examples 121.
Structure representation with enhanced sophistication is required for PNS.

Let M be a given set of objects, usually material species or materials that can be
converted or transformed by the process under consideration. Transformation between two
subsets of M occurs in an operating unit. It is necessary to link this operating unit to other
operating units through the elements of these two subsets of M. The resultant structure can be
described by a directed bipartite graph, termed a process graph or P-graph in short, which
alleviates the difficulty encountered in representing a process structure by a simple directed
graph.

Definition 1. Let M be a finite set, and let set O C_ p(M) x p(M) with M n 0 = 0,
where p(M) denotes the power set of M. Pair (M, 0) is defined to be a process graph or
P-graph; the set of vertices of this graph is M U 0, and the set of arcs is A = A1 U A2 with
A1 = {(x,Y)I Y = (a, f) E Oandx E a) andA2, = {(Y,x) I Y = (a•,B) E Oandx
E 1}. P-graph (M', 0') is defined to be a subgraph of (M, 0), i.e., (M', 0-) 5 (M,
0), if M' C M and 0' C 0. Let (MI, 01) and (M2 , 02) be two subgraphs of (M,
0). The union of (M1 , O1) and (M2 , 02) is defined by P-graph (MI U M2 , O1 U
02) denoted by (Ml, 01) U (M2 , 02); obviously, this union is a subgraph of (M,
0). If (a, 8) is an element of 0, then, set a is the input-set of (a, B), while set 8 is its
output-set. The set of arcs incident into, out of, and to vertex x are denoted by W-(x), W +(x),
and w(x), respectively. The indegree, d-, and the outdegree, d +, of vertex x are defined by
d-(x) = I w-(x) I and d + (x) = I w + (x) I . The degree of vertex x is defined by d(x) =
d-(x) + d+(x). Since sets w'(x) and w+(x) do not intersect for a P-graph, we have d(x) =
I W(x) I •

MINLP MODEL OF PNS
Let us consider a PNS problem in which the set of desired products is denoted by P; the

set of raw materials, by R; and the set of available operating units, by 0 = {o1, 02, ....
On}. Moreover, let M be the set of materials belonging to these units, and assume that
P n R = 0, P C- M, R C_ M, and M n 0 = 0. Then, P-graph (M, 0) contains the
interconnections among units of 0. Furthermore, each feasible solution of this problem
corresponds to a subgraph of (M, 0). For any 1 <j <n, let yj = I if oj is contained in this
subgraph and yj = 0 otherwise. Thus, this subgraph is determined by the vector (y1, Y2, ...

yn). Let A = {a,, a2 , . . . , ar- be the set of arcs and continuous variable xk (k = 1, 2,
r) be assigned to arc ak. The function, for which 0 ((ail, a-2 ..... ai )) = (xi x

ll 12P .. (x,1' .12'xi) holds for any subset {ai,, ai2 , . ., ai) of A, is denoted by *. Finally, continuous
variable zj is assigned to operating unit oj for j = 1, 2, ... , n.

The constraints on and the cost of operating unit oj can be expressed, respectively, by
gj(yj, 0 00(j)), zj) <5 O, j 1- , 2, .... n
fj(yj, 0('Wfoj)), zj), j 1 , 2, . ... n

where for a fixed value of yj, both fj and gj are nonlinear, differentiable functions on the
practically interesting domain for j = 1, 2, . . ., n.
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Similarly, the constraint on and the cost function of vertex mi can be given, respectively,
as follows:

gi'(4((mi))) :r. 0, i = 1,2 . , I
and

i= 1, 2, , j
In practice, g' and f are usually linear. The cost function of the PNS problem is the sum of
the costs of the materials and operating units involved.

COMBINATORIAL STRUCTURE OF PNS
In general, no arbitrary vector (yI, Y2, . . , Yn) (Yi E {0, 1}, i = 1, 2, . , n) can

define a feasible process structure. The feasible process structures have some common
combinatorial properties [21 that have been expressed implicitly in the MINLP model. Since
each feasible process structure must have these combinatorial properties, the set of subgraphs
of (M, 0), considered in solving the model, can be reduced to the set of combinatorially
feasible process structures or solution-structures in short.

Definition 2. Subgraph (M', 0') of P-graph (M, 0) is defined to be a solution-structure
of PNS given by set P of products and set R of raw materials if

(SI) P C_ M', i.e., every final product is represented in P-graph (M', 0');
(S2) V x E M', d-(x) = 0 iff x E R, i.e., a vertex from M' has no input if and only if it

represents a raw material;
(S3) V u E 0', 3 path (u, v] in (M', O'), where v E P, i.e., every vertex from 0' has at

least one path leading to a vertex representing a final product; and
(S4) V x E M', 3 (ca, 6) E 0' such that x E (a U 6), i.e., any vertex from M' must be

an input to or output from at least one vertex from O'.
The set of solution-structures is denoted by S(P, R, 0); its important properties are

expressed by the following theorem, lemma, and corollaries.
Theorem 1. S(P, R, 0) is closed under union.
Lemma. If (M', 0') E S(P, R, 0), then, M' = U (a U 6).

(a,B)EO'
The direct consequence of this lemma is the following corollary.

Corollary 1. Let (M', 0') E S(P, R, 0); then, (M', 0') is uniquely determined if set 0'
is given.

The maximal structure, defined below, plays an essential role in PNS.
Definition 3. Let us assume that S(P, R, 0) o 0. The union of all solution-structures

of PNS is defined to be its maximal structure; it will be denoted by /(P, R, 0), i.e.,

1 s(P, R, O) = U 0.
aE S(P,R,0)

Since the set of solution-structures is finite and closed under union, the maximal structure
also is a solution-structure; this leads to the following corollary.

Corollary 2. ;&(P, R, 0) E S(P, R, 0).
Naturally, the optimal solution need not be concerned with any operating unit not

included in the maximal structure. Since any optimal solution is a solution-structure, the
MINLP model of PNS can be based on the maximal structure. For this reason, let us suppose
that S(P, R, 0) ;d 0, and also let us denote the maximal structure, us(P, R, 0), by (M', 0').



195

A polynomial algorithm is available for the generation of the maximal structure 13].

BUILDING BLOCKS OF THE ACCELERATED BRANCH AND BOUND METHOD
Essentially, the branch and bound method yields the optimal solution of a mathematical

programming problem by generating and solving some simplified subproblems. Suppose that
we have three sets I0, I1, and If (any pair of them is disjunct) and that I0 U 11 U I f = {1, 2,

I.., n). These sets define one subproblem of the branch and bound method. In this

subproblem, 10 and 11 are the sets of indices of binary variables whose values are zero and
one, respectively, and If is the set of indices for the free variables of this subproblem, i.e., the
value of any of these variables is supposed to be in closed interval [0,11].

Subproblem Generation
The structures of some, or often most, subproblems, defined by 10, 11, and If, are not

substructures of any solution-structure; these subproblems are said to be structurally infeasible,
as will be delineated later. Only structurally feasible subproblems should be generated.

Derinition 4. Let ui(P, R, 0) = (M', 0'). Then, P-graph (m*, o*) is a
subsolution-structure of PNS given by set P of products and set R of raw materials, if

(SSI) for x E m*, d-(x) = 0, if x E R;
(SS2) o* c_ 0';
(SS3) V u E O', 3 path [u, v] in (M', 0'), where v E P;
(SS4) v x E M', 3 (o, B) E 0' such that x E (c, U 8).
Let S*(P, R, 0) denote the set of subsolution-structures; note that (0, 0) E S*(P,

R, 0). If (in*, o*) E S*(P, R, 0), then, (in*, o*) C ,L(P, R, 0).
Theorem 2. S(P, R, 0) C_ S*(P, R, 0).
For a given subsolution-structure, a* = (in*, o*) (E S*(P, R, 0)), let us define set r*

such that
r*= (xI x E (m*\R U P) andd-(x) =0).

Theorem 3. Let a* E S*(P, R, 0); then, a* E S(P, R, 0), if and only if r* = 0.
The accelerated branch and bound algorithm is based on algorithm SSG, given in Figure

1. Algorithm SSG generates each solution-structures exactly once and generates
solution-structures only. It does so by determining the decision-mappings of some
subsolution-structures (see the APPENDIX). These subsolution-structures define structurally
feasible subproblems of the MINLP model of PNS. The validity of algorithm SSG has been
proved by resorting to the following theorems.

Theorem 4. Decision-mapping b[m] of algorithm SSG is consistent, and it is a
subsolution-structure.

Theorem 5. Algorithm SSG generates all solution-structures whose decision-mappings
are the extensions of 6(m].

Theorem 6. 0 is a decision-mapping of algorithm SSG.
Theorem 7. No decision-mapping is generated more than once by algorithm SSG.
Theorem 8. Decision-mapping 61m] of algorithm SSG is a solution-structure if and

only if set p' of algorithm SSG is empty.
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Input: P, R, M, o(x) (x E M);
Comment: PGM, RGM, OG(M)xp(M), PrlR=0,

o(x)={(a,13) I (ct,B)EO & xE 3), o(x)=0 4* xER ;
Output: all solution-structures of the PNS problem;
Global variables: R, o(x) (x EM);

begin
if P= 0 then stop;
SSG(P, 0, 0);
end

procedure SSG( p, m, , [m]):
begin
if p = 0 then begin write 6[m]; return end
let x E p;
C := P (o(x)) \ {0;
Forallc E C do

begin
ifv yEm, cfn(o(y)\6(y))=0 & (o(x)\ c)rl5(y)=5

then
begin
b[mU{x}) := 6[m]U {(x c)) ;
SSG(pU( U ct )\(RUmU{x}), mU{x), 6[mU (x));

(a,B) Ec
end

end
return
end

Figure 1. Algorithm SSG

Theorem 9. Only one decision-mapping of algorithm SSG may belong to a
solution-structure.

SubDroblem Given by a Subsolution-Structure
Let us define a mapping, denoted by ind, that yields the set of indexes for the elements of

a subset of 0. Moreover, let 6(m] be a decision-mapping of subsolution-structure a*, and also
let S' be the following set;

S' = {( I a E S(P, R, 0) and the decision-mapping of ar is an extension of 6[m]).
If this set is not empty, then, 6[m] and the subproblem determined by 6[m] are defined to be
structurally feasible.

Theorem 10. Suppose that 6[m] is a structurally feasible subsolution-structure and that
structure ar is defined by r = U a'. Then, all solution-structures whose decision-mapping

a'ES'
are the extensions of 6[m] are a substructure of o. Conversely, a is minimal with this property,
i.e., for any structure p such that o'Zp, there exists solution-structure o'such that v' Cp.
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Obviously, decision-mapping 6[m] can be extended to decision-mapping 6[M*], a
decision-mapping of S'. Then, sets I I and If of a subproblem defined by 6[m1 are

I I ind( U 6(x)) and
xEm

If = ind( U 6'(x)),
xEM

where 6'[M] = 6[M*J \ 6[m].

ACCELERATED BRANCH AND BOUND ALGORITHM
Based on the building blocks mentioned above, an accelerated branch and bound

algorithm, algorithm ABB has been developed for solving the MINLP model of a PNS
problem (see Figure 2). This algorithm yields the optimal solution provided that the bounding

Input: P, R, M, o(x) (x E M) ;
Comment: PCM, RE-M, O_9a(M)×x (M), P nR=0,

o(x)={(a,fl)I (,B)EO & xEB), o(x)=0 ** xER;
Output: optimal solution of the PNS problem ;
Global variables: R, o(x) (x E M), U, currentbest;

begin
U := oo ; currentbest := anything;
if P= 0 then stop;
ABB( P, 0, 0 ); if U < co then print currentbest else print 'there is no solution'
end

procedure ABB( p, m, 6[m])
begin
let x Ep; C:=p,(o(x))\{0};
For all cE C do

begin
ifV yEm, cn-l(y)=- & (o(x)\c)nf(y)=-
then begin

6[mU{x]) :I 6[m]UI(x, c)}
6p'm=pU( U a )\(RUmU{x}); m' mU {x}

(a,B)Ec
if p' = 0
then begin

U :-= min( U, BOUND( m', 0, 6[m'J )) ; update currentbest;
end

else if RSG( p', m', S[m'I, M, 6[m'UMI)
then if U > BOUND( m', M, 6[m' U M]) then ABB( p',m', 6[m']);

end
end

return
end

Figure 2. Algorithm ABB
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algorithm exists, by generating structurally feasible subproblems only. Moreover, the size of
each subproblem is reduced by excluding the binary variables and constraints of those
operating units that can not be included in any feasible solution of the subproblem (see Figure
3 for procedure RSG).

procedure RSG( p', m', 6Im'], M, Ir'UM]) :
p:--- p' ;M := ;

while p is not empty do
begin
xE p;
M := ML{x} ;
6(x) :=o(x)\( U 5(y));

yEm'
if 6(x) = 0 then return false:
p:=pU( U cx)\(RUm'UM);

(ct,6) E 6(x)
end

return true
end

Figure 3. Procedure RSG

Exampole
The accelerated branch and bound algorithm has generated 6325 subproblems for an

industrial PNS problem involving 35 operating units in the worst case 121. This is about one
millionth of the number of the subproblems generated by the general branch and bound
algorithm in the worst case. The reduction in the number of free variables of each subproblem
of the accelerated branch and bound algorithm is also essential.
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APPENDIX
Decision Mannings

To generate a certain class of subgraphs of a graph, e.g., a set of feasible structures, a
special technique, decision-mapping has been developed to organize the system of decisions.
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Decision-mapping is a special tool to render our decisions consistent and complete in dealing
with complex decision-problems such as PNS.

Let us suppose that for finite sets M and 0, 0 E_ p(M) x p(M) holds; moreover, for
x E M, let us define set o(x) by o(x) {((a, 6) I (o, B) E 0 and x E B); naturally, pair
(M, 0) is a P-graph.

Definition 5. Let us suppose that sets M and 0 satisfy 0 _ P(M) X p(M) and set m
be a subset of M. Moreover, let B(x) be a subset of o(x), for x E m. Then,
6[ml = {(x, 6(x)) I x E m} is defined to be a decision-mapping on its domain m.

Definition 6. Decision-mapping 61[ml] is defined to be the restriction of
decision-mapping 621m21 to m1 . if ml S m2 and 61[ml1 = {(x, 62(x)) I x E ml).

Definition 7. The complement of decision-mapping 6[m] is defined by
6*Sm1 = {(x, y) I x E in and y = o(x) \ 6(x)}. Thus, 6*(x) = o(x) \ 6(x) for x E m.

Definition 8. Decision-mapping 6[m] is consistent if I 1 l 1 or (6(x) n 6(y)) U
(6*(x) nC 6*(y)) = o(x) n o(y) for any x, y E in.

Theorem 11. Decision-mapping 6[inj with I m I Z I is consistent if and only if 6(x) n
6*(y) = 0 for all x, y E m.

Theorem 12. Decision-mapping 611[ml is consistent if 61[ml] _C 621m21 and
62[m2 ] is a consistent decision-mapping.

Definition 9. For consistent decision-mapping 6[m], let o = U 6(x), m =
xEm

U (o U B) Um, andS'[m] = {(x,y) I x E mandy ={(c,B) (,B) E oandx
(a,Bl) E o
E 6)); then, 6'[m] is defined to be the closure of 6[m], and b[m] is said to be closed if 6[m]
= 6'[m]. The closure of a consistent decision-mapping is closed.

Theorem 13. Let 6'[m] be the closure of consistent decision-mapping 6[m]; then,
6(x) = 6'(x) for all x E in, i.e. 6[m) is the restriction of 6'imj to m.

Corollary 3. If 6'[m] is the closure of consistent decision-mapping 6[m], then 6[m]
c 6[{mJ.

Theorem 14. The closure of a consistent decision-mapping is consistent.
Definition 10. Two consistent decision-mappings are equivalent if they have common

closure.
Naturally, a consistent decision-mapping is equivalent to its closure, and the relation

"equivalent" is an equivalence relation.
Definition 11. m' is said to be an active domain of decision mapping 6[m] if mW- in,

U 6(x) = U 6(x) and U 6*(x)= U 6*(x).
xEm' xEm xEm' xEm

Note that m is always an active domain of decision-mapping 6[m], and a
decision-mapping can have multiple active domains.

Theorem 15. Let 6[m) be a consistent decision-mapping; then, it is determined on its
whole domain, m, if it is given only on one of its active domains.

Theorem 16. If a decision-mapping is consistent on one of its active domains, then,
it is consistent.

Definition 12. Let 6 1[ml] and 621m2 ] be consistent decision-mappings with their
closures, 61 '[ml] and 62 '[m 2 ], respectively. Then, 61[mi] is defined to be an extension of
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62[m21 if
(0) ml 2D m2' m! _Q m2,

(ii) S2 [m2 ] is the restriction of 51[ml] to m2 , i.e., 61(x) = 62 (x) for x E m2 , and
(iii) 61'(x) _ 62 '(x) for x E m2 \ m2 .
A consistent decision-mappings is an extension of 0. That 61[mil is an extension of

62[m 2] is denoted by 61[mlJ > 62[m2j.
Theorem 17. 6'[m) > 5[mj where 6'[mJ is the closure of consistent

decision-mapping 61m].
Theorem 18. The relation extension is a partial order of the set of consistent

decision-mappings.
Let P-graph (in, o) be a subgraph of P-graph (M, 0)
Definition 13. m' is an active set of P-graph (in, o), if in' C_ m and 6 nl m' ;d 0 for

any (a, 8) E o.
Definition 14. Let m' be an active set of P-graph (m, o); then, b[m'] is defined to be

a decision-mapping of P-graph (in, o) if 6[m'] = {(x, y) I x E in' and y = {(a, 8) 1 (a, 6)
E oandx E ))}, i.e.,6(x)= {((a,) I (e, 6) E oandx E 6} forx E m'.

Theorem 19. The decision-mappings of a P-graph are consistent.
Theorem 20. Decision-mapping 6[ma of P-graph (m, o) is closed if set m is active.
Theorem 21. An active set of P-graph (m, o) is an active domain of its

decision-mapping 6[m] if set in is active.
Theorem 22. The decision-mappings of a P-graph are equivalent provided that this

P-graph has an active set.
Theorem 23. Let 6[m'] be a consistent decision-mapping, o = U 6(x) and

xEm'
m = U (Ot U 8). Then, (m, o) is a P-graph, m' is an active set of P-graph (m, o), and 61im'I

(aB))Eo
is a decision-mapping of P-graph (m, o).

Definition 15. The P-graph of consistent decision-mapping 6[m'] is defined to be (in, o),
whereo= U 6(x) andm= U (a U 6).

xEm (a,B)Ee
Theorem 24. An active domain of a consistent decision-mapping is an active set of its

P-graph.
Theorem 25. Equivalent consistent decision-mappings have the same P-graph.
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Abstract: In the paper, a special class of linear programs with an additional re-
verse convex constraint is treated. The problems to be considered have the special
property that the feasible set is the union of some faces of the polyhedron deter-
mined by the linear constraints. Several nonconvex programming problems can
be written into this form, e.g. the minimum linear complementarity problem, the
linear disjunctive programming problem, the linear bilevel programming problem,
the problem of linear optimization over the efficient set, etc. We propose a finite
method based on convexity and disjunctive cuts for solving such problems.

1. Introduction

The problems to be considered are given in the form

min c1Tx s.t. x E P, g(x) = 0, (1.1)

where P C R" is a nonempty polyhedron, c is an n-vector and T denotes the

transposition. In addition, g : G -+ R is a concave function such that G C R' is
a convex set, P C G and

g(x)>0 for every xE P.

Because of the last property, (1.1) is equivalent to

nin cTX s.t. x E P, g(x) • 0, (1.2)

which is the form of a linear program with an additional reverse convex con-
straint. Several methods have been published for solving linear programs with
an additional reverse convex constraint, see e.g. 16,8] and the references therein.
However, instead of applying one of these methods directly, we propose a modi-
fication of the algorithm presented in [6] for solving (1.2). This is motivated by
the property that the possibly nonempty feasible set of (1.1) is the union of some
faces of P. Consequently, if (1.1) has finite optimal value, there exists a vertex
of P among the optimal solutions. For a linear program with a general reverse
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convex constraint, we can state only that an optimal solution can be attained on
an edge of P.

In Section 2, we propose a finite cutting plane method for solving (1.1). In Sec-
tions 3 through 6, we show that a wide range of nonconvex programming problems
is transformable into the form-of (1.1).

2. A finite cutting plane method

We assume that the polyhedron P is given by P = {x E R' I Ax = b, x >. 0),
where A is an m x n matrix and b is an m-vector. Let X denote the feasible set
of (1.1).

Proposition 2.1. If/X 34 0, then X is the union of some faces of P.

Proposition 2.2. If X 4 0, then exactly one of the following cases holds:

(i) Problem (1.1) has a finite optimal value and there exists an extreme point
of P among the optimal solutions;

(ii) The objective function cTx is unbounded below over X and there exists an
edge F of P such that F C X and cTx is unbounded below over F.

Consider first the case when crx is bounded below over P, e.g. P is bounded.
Let V(P) denote the set of the extreme points of P. Consider the problem

rain JTx s.t. x E V(P), g(x) = 0. (2.1)

By Proposition 2.2, problems (1.1) and (2.1) have simultaneously feasible solution,
and any optimal solution of (2.1) is optimal for (1.1) as well. If we are interested
only in finding the optimal value and an optimal solution of (1.1), it is enough to
solve (2.1). We shall deal with (2.1) in the se.,uel.

Any x° E V(P) is also a basic feasible solution of

Ax=b, x>O. (2.2)

For a feasible basis B of (2.2), let the simplex tabular form of (2.2) be determined
by

xi + E ckJXJ = a°,' i E IB, (2.3)
jE18

where IB and 1B denote the index sets of the basic and nonbasic variables, respec-
tively.

Consider an x? E V(P) such that g(x°) > 0. Then, x? is not a feasible solution
of (1.1). We construct a convexity cut to exclude x° from the further search. Let
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B be a feasible basis belonging to x°. Using the coefficients of the simplex tabular
form (2.3) determined by B, construct the vectors zi E R", j E 1-8, defined by

• •1 for k=j,

Zk= -ak for1kEIB, k= 1,...,n; )EIfB. (2.4)

10 otherwise,

For every J E 1B, compute

Aj = sup{ f A I + Azd E G, g(x + Az) > 0}. (2.5)

Clearly, Aj > 0 for every j E 1B.

Proposition 2.3. Assume that A, > 0 for every j E 1B. Define t E R" by

tforIE and A, k= 1,...,n. (2.6)

0 otherwise,

Then

tTxO < 1 and g(x) > f0 orevery xEPfn{xERf n t Tx < 1}. (2.7)

Proposition 2.4. If the vertex ? is nondegenerate, then Aj > 0 for every j E l.

Proposition 2.5. If xA is an inner point of G, then Aj > 0 for every ) E 1B.

Assume that we have an xA E V(P) such that g(x°) > 0 and Aj > 0 for every

j. E IB. Then, the convexity cut
tTx•_ 1 (2.8)

defined by (2.6) cuts off xA but leaves the possible points of X. If we have A. = 0
for a j E 1B, then a convexity cut similar to (2.8) can be also generated at the
expense of some extra efforts including the determination of the edges emanating
from A° and solving a linear program [8].

In the latter case, an alternative and faster way of excluding A° from the further
search is the generation of a disjunctive cut. We construct a cut of form (2.8) such
that

tTXO < 1 and tTx > 1 for every x E V(P) \{xO. (2.9)

Let I+ = {i Ix? > 0). Then for any x E V(P) \ {Ax}, there exists at least
one i E I+ such that xi = 0. The disjunctive cut is constructed based upon this
disjunction.

- -----------
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Proposition 2.6. Consider a simplex tabular form (2.3) belonging to x0 and let

ma{ ai/aio i E I+) for i E 18,
ti = k = .. ,n. (2.10)

0 otherwise,

Then the cut (2.8) defined by (2.10) fulfils (2.9).

Assume now that we have found an x0 E V(P) such that g(x?) = 0. Then x is
feasible to (1.1) and (2.1). Let N(x0 ) denote the set of those vertices of P which
are adjacent to x0. Examine whether there exists an x1 E V(P) such that

x EN(x°), g(xl) = 0 and cT i <cT X, (2.11)

If we find such an x', then we replace x0 by x' and repeat the matter above. In
this way, we step on feasible solutions of (2.1) meanwhile improving the objective
function value.

After a finite number of improving steps, we obtain an x0 feasible to (2.1) such
that we cannot find an x E: V(P) fulfilling (2.11). It may also occur that there
exists such an x3 but x' is a degenerate vertex and we would like to spare the time
needed for determining N(xO). We add the objective function cut

cT 1 X--, (2.12)

where 7 = cTxo, in order to exclude the points with objective function value
greater than -. However, since ?° fulfils (2.12), we also generate a disjunctive cut
presented above to exclude x0 from the further search.

After adding one or two of the cuts presented above, we proceed with a new
x0 E V(P), if any, such that x0 fulfils the cut constraints generated earlier. At
a step of the algorithm, let Q C Rn be the set of the points feasible to the cuts.
Of course, Q is a polyhedron. The subproblem to be solved is now to find a
point of Q n V(P) or to prove Q fl V(P) = 0. This is a well-known problem of
nonconvex programming. It was treated first by Majthay and Whinston (10] in a
concave minimization context. They proposed a finite cutting plane method using
a parametric programming technique. Their method was improved and extended
by Ffil6p (5] using a disjunctive programming technique. We suggest applying the
finite method of (5] to find a point of Q fl V(P), if any.

The cutting plane method proposed for solving (2.1) is summarized below.

Algorithm 2.1:

Step 0: Set -y +- o and Q +- R'.
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Step 1: If Q n V(P) = o, stop. Otherwise, find an x° E Q n V(P). If g(x°) = o,
go to Step 2. Otherwise, go to Step 3.

Step 2: If we can find an x' fulfilling (2.11), then set x0 -- x' and repeat Step
2. Otherwise, set -y 4- cTxo, x* + x0, generate the disjunctive cut (2.8)
defined by (2.10) and set -Q +- Q fl {x E R' I tTa Ž_ 1,cTx < -y}. Go to
Step 1.

Step 3: For every j E fB determine A) by (2.5). If A, > 0 for every j E 1B,

generate the convexity cut (2.8) defined by (2.6). Otherwise, generate the
disjunctive cut (2.8) defined by (2.10). Set Q -- Q nf {x E R' I tTx > 1}
and go to Step 1.

Proposition 2.7. Algorithm 2.1 solves (2.1) in finite steps. If -T = oo, then (2.1)
has not feasible solution. Otherwise, -y is the optimal value and x* is an optimal
solution of (2.1).

We turn now to the case when c 'x is unbounded below over P. W\e have to
check whether cTx is unbounded below over X as well. If (2.1) has not feasible
solution, we are done since X = 0. Otherwise, let y be the optimal value of (2.1)
and choose a "' > -y arbitrarily. Let P = P n {x E R' I cTx = fl.

Proposition 2.8. The objective function cTx is unbounded below over X if and
only if

min {g(x) I x EP} = 0. (2.13)

It is clear that (2.13) holds if and only if there exists a vertex x of P such that
g(x) = 0. Similarly to Algorithm 2.1, a finite algorithm based on convexity and
disjunctive cuts can be proposed to verify (2.13).

3. The minimum linear complementarity problem

Consider the minimum linear complementarity problem given in the form

min cTx s.t. Ax=b, x >0, xix+i =0 for i=1 .... ,f, (3.1)

where the sizes of matrix A and vectors x, b and c are the same as in the previous
sections. We assume that 2ii < n. Judice and Mitra [9] showed that several well-
known mathematical programming problems can be transformed into (3.1). See
[9] for a list of such problems and the details of the reformulations.

For an x E R", let
ft

g(X) = -min{xi, xj,+,}.
i=l
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Then g : R" --+ R is a concave function. Let P = {E R" I Ax = b, x > 0}. It is
easy to see that (3.1) is equivalent to (1.1).

We mention that the reformulation of some mathematical programming prob-
lems into (3.1) may result unrestricted variables xi, j = 2ft +1,... , n. The method
presented in Section 2 can be-_easily modified for such problems. Another way is
to write these unrestricted variables as differences of nonnegative variables.

4. The linear disjunctive programming problem

A mathematical programming problem is called linear disjunctive programming
problem if the feasible set can be represented by a finite number of intersection
and union operations on a finite number of closed halfspaces. In addition, a linear
function is to be optimized over the feasible set. It can be shown [71 that any linear
disjunctive program can be transcribed into an equivalent problem of following
form:

mrin cT s.t. Ax=b, x 0, H jJ =0 for i 1,...,k, (4.1)
J.Eli

where Ii _ {1,.. .n) for i = 1,. .. ,k. Let the concave function g : R- . R be
defined by

k

g(X)= Zminfxi IJ E I}.

Then (4.1) is equivalent to (1.1). It is also easy to see that (3.1) is a special case
of (4.1) with k = fi and I, = {i, fi + i) for i = k.

5. The linear bilevel programming problem

Consider the linear bilevel programming problem [1,4] stated as follows:

max c()T y + C(2)Tz, where z solves (5.1)

max d(')TY + d(2)Tz (5.2)
z

s.t. A( 1)y + A(2)z = b, (5.3)

y>Ž0, z>0, (5.4)

where c(0), d(') and y are nl-vectors, c(l), d(2) and z are n2-vectors, b is an m-
vector, AM') is an m x ni matrix and A(2) is an m x n2 matrix. Let

[= ], c= d(2) and A-
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Let P = {x E Rnl +n2 1 Ax = b,x > 0}. We assume that P - 0 and dTx is
bounded above over P. For an x E R, +n•2, let

,, _ 2 )T (2);T
g(x) = -d' + max'{d'' - I A = b - A(l)y, i > 0}, (5.5)

where g(x) = -oo if the maximization problem in (5.5) has not feasible solution.

Let G = {x E Rn"+n2 I g(x) > -oo}. It can be shown that G is convex, P C G,
g is a piecewise linear, continuous and concave function over G and g(x) > 0 for
every x E P. In addition, (5.1)-(5.4) is equivalent to (1.1) with the modification
that cTx is to be maximized now.

6. Linear optimization over the efficient set

Consider the multiple objective linear program

"max' Cx s.t. x E P, (6.1)

where C is a k x n matrix and P C R" is nonempty polyhedron. By definition [11],
a point x° E P is an efficient solution of (6.1) if and only if there exists no x E P
such that Cx > Cx° and Cx 4 Cx°. Let E(P) denote the set of the efficient
solutions. Consider the problem

mill CTx s.t. x E E(P), (6.2)

where c is an n-vector. Problem (6.2) has several applications in multiple objective
programming, see (2,3,11] and the references therein.

For an x E R , let g(x) be defined by

g(x) = max crC(y - x) s.t. Cy > Cx, y E P. (6.3)

where g(x) = -oo if (6.3) has not feasible solution and g(x) = oo if the objective
function is unbounded above over the nonempty feasible set of (6.3). In (6.3), e is
the k-vector whose every component is equal to 1.

Let G = {x E Rn I g(x) > -oo}. Clearly P C G. It can be shown that
E(P) y 0 if and only if g(x) is finite for every x E G. Assume that E(P) # 0.
Then g is a nonnegative, piecewise linear, continuous and concave function over
G. In addition, problem (6.2) is equivalent to (1.1).
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EXTENDED ABSTRACT

We consider here the following stochastic programming problem:

minimize ~F-,f(x,w) (1)
subject to p(x) <O, xEX

and, more specifically, stochastic linear program with recourse

([WETS66], [BIRG86], [KALL76], [PREK73]) which is the problem (1) with
f(x,w) = cT(w)x + Q(xw), p(x) = Ax-b and

Q(x, w) = min {qT(w0)y I W(w)y = h(w)-T(w)x} (2)y .
where E• denotes expectation with respect to w, an element of some

probability space (Q, B, P). We assume complete recourse, i.e. (2) always
has a solution.

Several methods for solving this problem which combine Dantzig-Wolfe
decomposition and statistical techniques were proposed recently
([HIGL91], [GAIV89]). The common feature of these methods is the
necessity to solve on each iteration linear or quadratic programming
problem which can be of considerable dimension.

In this paper we continue research in the direction of [GAIV89] and
propose a specific algorithm for solution of problem (1)-(2) which combines

stochastic quasigradient techniques with generalized linear programming.
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Let us explain in more details the algorithm we use to solve problem

(1)-(2). The generalized programming technique of Wolfe [DANT80]

applied to (1) involves grid linearization of Q(x) = EQ(x, wa), that has been

shown to be convex [WETS66], and requires coordinated solution of a

master program and a Lagrangian subproblem defined as follows:

k k

min cI j + Y2 Q(4VA
j=1 jfil

S. t.
k

k. (Axi)Aj b (3a)
j=l

k

vk:" j = 1
j=1

Where k, vk are the dual multipliers associated with the optimal solution

of (3a) and c = Ewc(x, (a).

Sub•r•b.•m: Find xk+1 ERn such that lxk+ 1-<u and
akxk + 1 + Q(xk+ ) < Vk (3b)

by partially optimizing the problem:

_minl!x!u oax + Q(x) (3c)

where uk ( c -AT nk).x~

Hence, the essential features of the method consist of sending the prices

of the master to the subproblem that uses them to identify an improved

solution xk+1 , depending on the previous points x1 ...xk. In this way, a

sequence of points x° ... xs is generated by the algorithm, which converges to

the solution of the problem (1) in a certain probabilistic sense.

The problem is that it is not possible to compute the values of Q(xý) and

its sugradients exactly, except in some rare cases [NAZA86]. More generally,

Q(xi) can be approximated, for example by a sample procedures. What we
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do is to replace Q(xý) by an estimate, say Q6. This substitution does not affect

the solution of the Master problem too much and for the Subproblem it is
not relevant if we do not optimize at each iteration, but we just look for a

point that satisfies relation (3b). This suggests to use statistical techniques

for the subgradient estimation in order to find the next improving point xk+1.
In particular, we use stochasic quasi-gradient procedures because of its
effectiveness in solving problems that has not to be pushed all the way to

optimality ([ERMO76J, [GAIV88]).

The fundamental steps of the proposed algorithm are illustred below.

STEF1: (Initialize)

Choose a set of m grid points x ,...,xm so that constraints

k

Z_(A = b
j=1

k
I A = (4)

j=1
Aj> 0

have a feasible solution. The simplest way to find them is to fix the values
of j and start to solve the problem, of minimization of the objective function
k

I cXAj, for example using the simplex algorithm. The basic solutions found
j=1

at the first m iterations may be a good choice for initial points.

Set k--t.

STEP 2: (form estimates)

Define a subset Nk of integers, Nk C { 1,...,k}, which are the indices of the

set of grid points for which the estimates will be made, and the number s(k)

which controls the precision of estimates Qa of Q(x1 ), in the following way:

- 's(m) =so
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- define a sequence {kp= 1 with kp+i >kp, and

IF k = kp(for some kp) THEN Nk = { 1,...,k}

sk) = s(k-1) + 1

ELSE Nk = {k}

s(k) = s(k-1)
Elements of kp define the iterations in which estimates have to be updated

at all of the available grid points. During all other iterations only the

estimation at the last point is performed.

- Qj, with j C Nk, is updated by:

IFk=mTHEN(Vj < k)

so
•Q(xp') where d' are indipendend observations of W.

.s(k)

ELSE Q(g,)-- (1~ ) 1 - + (xj, ws(k))

for j;* k.

- The estime at the last grid point to enter in the set is made as:

s(k)

--" (1-s-•)) -+ - =Q(xk,0i)

Such estimates have the property that [(Q ) - c ] = ek-,O a.s., as
s(k)-ooo.

STEP 3. (solve Master)

- Solve the master problem (3a) in order to obtain the value of the

dual multpliers, xk and v, and of the primal variables 4,t.
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At this point the set Ak = {j: 4f > 0} can be defined such that it is possible

to redefine the set Nk avoiding to update the estimates in those points having

j 0Ak.

=TP1 :(Define a new grid loint xk+1)

- Define ok=C(c-ATark) and consider the Lagrangian subploblem (3c).

- Fix the number Sk of iterations and compute a sequence of points

using the stochastic quasi-gradient method as follows. Here ds are
the optimal dual variables associated with solution of the problem

(2) for x =x.

S=Ok-fTT(ws)ds

x+I= Px(4 -ps, ) with

s=O,...,Sk-1, x-=xj and Xk+1 =k

where Px is the projection operator over the set X of points belonging to

the feasible region.

STEP 5: (Iterate)

k 4- k + 1. Return to Step 2.

It is important to note that it has been possible to apply the generalized

linear programming to stochastic problem introducing two important

modifications, mentioned above, to the original decomposition method.

Firstly, it does not require exact values of the objective function (step 2). It

is only necessary to have estimates of the objective values at the grid points

with their precision gradually increasing. Secondly, it is not necessary to

minimize the Lagrangian subproblem at step 4, precisely, it is only necessary

that current point x k+1 regulary comes to the vicinity of such a solution.

The convergence of this algorithm to the set of optimal solution of

problem (1)-(2) with probability 1 follows from results contained in

[GAIV89].
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Methods using the decomposition techniques have as common feature
the necessity to solve at each iteration a large scale linear problem. In order
to speed up the computational process we have paid much attention to

preprocessing of linear programming subproblems. In particular, we
implemented this algorithm by calling each time a processing routine and a

linear programming solver of the Optimization Subroutine Library (OSL)

[OSL92]. This allows to reduce greatly the problem dimentions and to take
advantage from similarity existing among problems arising at different

iterations.

Results of numerical experiments are reported in the full paper.
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This paper is concerned with the multistage stochastic linear programming problem,
written in deterministic equivalent form as

K, K 2  KT

rain c4X0  + E Pk1 C'kXki1 + Fj Pk2C'k2Ztc2 + - + E PkC4
e;,Xk,

kt-=-- k2---Kl•l kr=KT-,+I

s.t. AOzO =bo

BkXzo + Aklzkl = bkt, k1 = 1,...,K,

Bk2X4(k2) + Akxk 2  = bk 2, k2 = K1 + 1,... ,K2

"'. " (1)

BkrTx(kT)+ATxkTr =bkr, kT=KT-I +1,...,KT

xk ý_ O, k = O,...,KT.

Nested Benders decomposition (Birge [1], Gassmann [2]) splits this problem into KT+1
pieces, one for each node in the decision/event tree. Each of these subproblems takes the
form

min ckzk + tk

s. t. Ak•zk bk - BkX,(k)

FkXk :_ fk (2)

Gkzk+19k _5gk

Zk >_0.

Here (Ft, fk) defines feuibility cuts, generated by the subproblems beyond k's time stage
to ensure their feasibility, and (Gk,gk) are optimality cuts (1 is a column of ones) which
cut off non-optimal parts of k's feasible region.
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As the number of stages increases, information has to travel through more and more
intermediate points to get from the first stage to the horizon and back, and one would
expect this process to be quite time-consuming.

The fast-start method described in this paper selects one scenario, that is, a single
path from the root of the event tree out to one of the leaf nodes and solves it as a regular
LP of reasonable size. If the scenario i-epresents an "average" set of realizations, then one
would expect the optimal decision variables for the stochastic problem to be "near" the
optimum values for the scenario problem.

In other, words, the scenario solution can be used as a reasonable starting point for the
other problems. The important distinction between this approach and scenario aggregation
and the progressive hedging algorithm of Rockafellar and Wets [4] is that in the present
approach a scenario is not an indivisible unit but is merely seen as a means to an end,
namely to find good starting bases for the node problems (2).

The main difficulty lies in disaggregating the scenario solution into the different stages.
Let's look at the two-stage problem first. We can assume without loss of generality

that the first scenario consists of nodes 0 and 1, and we can separate the optimal solution
x* into five different components (an optimal solution must exist if the overall problem (1)
is to have a solution):

- xOB are first stage columns which are basic in first stage rows
-xOs are first stage columns which are basic in second stage rows
- XON are first stage columns which are nonbasic (and have value 0)
- X1B are basic second stage columns
- X1N are nonbasic second stage columns

It is clear from the problem structure that all the components of X4 B, must be basic
in second stage rows. Moreover, if s = ISI is the number of components in the second
group, then we need s + 1 cuts to force the solution of the node problem (2) to agree with
the first stage decisions of the scenario problem. These cuts are derived from the second
stage problem

min clxl

s.t. Aix, =bi - Bixo (3)

ZX >0,

using x0 = zx and the 2s perturbations xO ± 64i, for i E S and some step length 6. At
most one of the two directions will yield a cut to the node 0 problem, and the cuts can
be both optimality and feasibility cuts. The starting basis for solving (3) is in all cases
defined by zxB, augmented with slacks corresponding to the deleted variables xOs.

However, the cuts in node 0 are only valid for the single scenario problem, so optimality
cuts have to be updated ("peeled back" in the language of Higle and Sen (3]) to reflect
contributions from the other problems.

There are several ways to perform the update.

A. If the uncertainty is in the right hand side only and if the solved scenario corresponds
to the mean value of the realizations (i.e. bi = p.,bi=), then the cuts are valid
without modification. (This is a simple application of Jensen's inequality.)
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B. If Li is a lower bound on the objective value for the node problem at node i, for
i = 1 ... K 1, then the optimality cut

7r Bjz0 +00 <~ b,

must be adjusted to read

K,

p1 wBlxo + do < p,7r•bi + E-piLi.
i=2

C. If Ir* are dual feasible solutions for all the second stage node problems, then the
optimality cut (4) can be adjusted to

K, K,

Z p 'irBxo + 0Oo _ piwrbi

This form is obviously tighter than B. but involves more work. If the A-matrices and
cost coefficients are deterministic, it is of course permissible to use 7ri throughout.

D. A simplified version of the:algorithm dispenses with creating the cuts entirely and
simply throws away information about the "superbasic" variables z.s.

Multistage problems are similar; the schematic decision tree of figure la. may serve
as an example with four stages.

1 1

A23 2 2' 2' 2' 3 3' 3' 3'

456744' 5 n 5' 6 6' 7 7'

8 9 10 11 12 13 14 15 89 10 11 12 13 14 15

Figure la. A four-stage Figure lb. A two-stage
decision tree lower bound problem

The scenario problem (1 2 3 4) is solved first and cuts based on the second stage (2 3 4)
are created and updated to be valid for the eight-scenario problem indicated in figure lb.
Because the value of information is always nonnegative, this defines a lower bound, and
hence the cuts will also be valid for the configuration of figure la.

The optimal basis can be copied to the scenario problem (3 6 12), then both are
separated out, the cuts are created and updated so as to be valid for each of the four
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scenario problems lying downstream from nodes 2 and 3, then one works on the scenarios
(4 8), (5 10), (6 12) and (7 14) in the same fashion, and finally one arrives at the fully
separated problem with 15 nodes used in the nested Benders decomposition.

It is possible for one of the subsequent scenario problems (3 6 12), (5 10), (6 12),
(7 14) to be infeasible. In that case, no optimality cuts should be derived from this
scenario (or any of the subsequent s6-enarios imbedded in them), which may necessitate
some modification to the updating of cuts if option C. is used.

Preliminary results on a set of standard test problems show a consistent reduction in
CPU time of between 10 and 30% over standard nested decomposition methods.
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Some connections between integer programming

and continuous optimization

F. Giannessi, Dept. of Mathematics, Univ. of Pisa, Italy

Abstract.

The purpose of this paper is to stress the importance of analyzing
the relationships between combinatorial and continuous optimization. In

order to attract more attention to this field some recent and less recent

invesitgations will be touched.
First of all we discuss an equivalence property between two extremum

problems of type:

(1) minf(x) , xEZfR,

and

(2) min[f(x) + Mio(x)] , x E X n R,

where Z C X represents a relaxation.

This property is used to establish an equivalence between a nonlinear

integer programming problem of type:

(3) minf(x) , g(x) Ž_ 0, x E {0,1}n

and a continuous nonlinear programming problem of type:

(4) min[f (x) + ~x T (e - x)] , g(x) >_ 0O, 0 <_ x <_ e,
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where eT (1,..., 1). A quadratic objective function is considered as a

special case.

By means of the preceding relationships it is easy to connect an

integer programming problem. with a complementarity problem in the

form

(5) F(x) > O, x > 0, (F(x),x) = 0,

with a variational inequality in the form

(6) (G(x), y-x) >0, VyE/K,

and with a fixed-point problem in the form

X = (X),

where the maps F, G, 4P and the set K are defined by the data of (3).

The results which connect (1) and (2) can be generalized and ex-
ploited to close the duality gap when the Lagrangean relaxation is applied
to a facial constraint.

Some remarks are made about the resolution of problem (4) and of
variational inequality (5).

In order to deepen the relationships between combinatorial and con-
tinuous optimization we introduce the concept of image of a constrained

extremum problem. If this is given in the form

(7) min V(x) , g(x) >! 0 x E X, (V : X - Rt; g. :X --+ R'),

then, given any i E X, the image of (7) is the set

K:= {(u,v)E ERxR' : u= w(i)- (x), v = g(x), XeX}.
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Now the optimality of t is reduced to the disjunction of I and the set

n :={(u,v)EIRxR'm :u>O, v>O}.

Separation arguments or alternative ones can be used to show 7tn Ki = 0.
The fact that separation and alternative may be considered equivalent but
different languages for expressing the same thing enables one to reduce,
to the same scheme, very different problems, for instance, problem (6).

If K is given in the following form:

K := {y E X: g(Y) 0},

where g : X -+ J tR', then obviously x E K solves (6) iff the system (in
the variable y)

(G(x), x-y) >0, g(y)Ž_O, yEX

is impossible. Hence it is easy to introduce the image of (6) as the set

IK(x) := {(u, v) E 1Rx1R' :u = (G(x),x - y), v= g(y), y E X}..

This leads us to associate, to problem (6), the following "gap function"

O(x) := minmax[(G(x), x - y) + -y(g(y); w)],
wEft yEX

where -y : R xQ -- R belongs to a wide class of functions (called sepa-

ration functions), which includes the linear ones, and represents the gen-

eralized Lagrange multiplier approach. The crucial properties of ip are:
ik(x) > 0 Vx and ip(x) = 0 iff x solves (6). Hence we have "two ways con-

nection" between optimization problems and variational inequalities. An
interesting application of this is to the study of equilibrium in a network.
In some real cases (6) is a better model than (7), since the equilibrium
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is better interpreted by well known Wardrop principle. In this case the
above equivalence may enable us to exploit the methods of combinatorial
optimization for solving a "coutinuous model" like (6).
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New Results for Aggregating Integer-Valued
Equations
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§1. Introduction

Our goal in this paper is to provide new theorems for aggregating general

integer-valued equations that can be shown to imply useful analytical results. We give

theorems that provide new methods for aggregating equations, and show that each yields
significant earlier results as special cases.

A number of references have been devoted to identifying rules for aggregating

equations, which determine integer - valued weights for the equations so their linear

combination yields a single equation with the same nonnegative integer solution set as the
original collection. To emphasize this rigorous equivalence between the original system

and the corresponding single equation we refer to this outcome as "integer equivalent

aggregation " or LEA. The coefficients of the aggregated equation tend to become
exceedingly large as the number of original equations increases, and hence it is desirable to

identify weights so these coefficients will lie in a range as limited as possible. Babayev and
Mamedov (21 have derived a novel result for integer-valued equations whose right hand

sides are equal to 1, yielding what have been conjectured to be the smallest possible
weights. Later this result was extended by Knyazev (5] to the case where right hand sides

are equal to a common integer value b > 1. Our new results subsume these earlier results

and also give a variety of additional ways to aggregate equations.

- §2. Notation and General Results

Let N = 1,2,..., n, and X be a subset of the nonnegative n -dimensional integer

vectors (as possibly constrained by additional inequalities or equalities of interest), and

consider the equations

Acknowledgment This research is supported in part by the Joint Air Force Office of Scientific Research
and Office of Naval Research Contract No 49620-90-C-0033. at the University of Colorado.
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(1) aj xj==a10 , xeX,

(2) 1a2j X, =a, x, eX,
jam

where the summations are over components of x, and the coefficients a,, and %j are

integers, not necessarily nonnegative. Define ao, = wlaj + w2a21 , where w, and w2are

integer weights of the arbitrary sign. Then we seek conditions under which the equation

(3) 1 axj = a,, x e X,
jaN

has the same solution set as (1) and (2). A collection of equations can thereby be

aggregated iteratively taking (3) in the role of (1) and letting each successive equation

of the collection (except the first ) take the role of (2).

Let X' and X2 be two supersets of X (i.e., X' : X and X' Q X ) and

consider the two related equations :

(la) aljx1 = a,, x eX',

(2a) 'I ax; = a2,, x e X2 .
jaN

Typically (la) and (2a) each imply a number of linear inequalities in nonnegative

coefficients, as, for example, simple upper bounds on some components of x. In general.

we will represent any of these inequalities implied respectively by (la) and (2a), as

(1) __btjxj :5blo. x eXV,

JUN

(2") Xb2 jx, <b2, xEX 2 ,
JUN

where coefficients bj and b2j are assumed nonnegative, though not necessarily integer.

Our first major result is
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Theorem l.For k=l,2 let Xt = f xeXk: x1=Oforeach jeN such

that xj is bounded from above by x e X" I and let w1 and w2 be relatively prime

integers. Then (3) is equivalent to (1) and (2) if

(4) w1 = •ax for some x'" X,2 that violates (2°), i.e., biiX,>bm,

jqN jan

(5) w2= X, aljx" for some x" e X. that violates (I*), i.e., IXb,1x'> b,, .
J4N jaN

Our second result makes use of upper and lower bounds on the left hand sides of

the equations (1) and (2).

We introduce a collection of eight inequality conditions by the following notation:

Cq:: -WI> U2 -a. ; Cý.: w1 > U 2- a ;

c1+ : 1 > >-(4 -a.) ; c;: -W, > -(L-2-a.o) ;
(6) C2.: W2> U, -al0 ; C: -w> U, -a,,

C2, : -w2 > -(4• -210) ;C;t : W2 > -(4• -aio) ;

where

(7) U,=max(max a~x1 ,a, 0 ), L,=min(ninx a~x•, a,0), i=1,2.
zAX jiN zaX jaN

Each of the inequalities of (6) is strict, with nonnegative right hand sides, so they
provide lower bounds for the absolute values of the multipliers w, and w... The symbols

u and I in (6) refer to inequalities based on upper and lower bounds, respectively.

Allowing i to take the values 1 and 2, (7) determines U, and L, by reference to

equations (1) and (2). If we employ the conventions

+ 4I 1 u 1l, B, t c* Uj,

- ,c*2, 1• 2, 4,2 ý* 4,,

then the conditions of (6) can be succinctly represented in the composite form
(8) Co : (-l)+w' > (-l)P-'(B3.., -a,._.), i,p,a e ,1,2,3 }

T h e o r e m 2. Equation (3) is equivalent to the system (1) - (2) if w1 and

w 2 are relatively prime integers that satisfj any pair of conditions (C, Co), i.e.,

(Co#, C;), when the following relation is valid
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(9) i j or por.

If i = j in the pair ( C,, C;.), then w3_, can be given an arbitrary integer value,

relatively prime with w,.

N o t e 1. For aggregating it is not necessary that the system (1) - (2) be consistent. The
theorems of this paper are also valid for systems that are inconsistent, i.e., that have an
empty set of solutions.

In computational practice it may be more important to obtain a smaller maximum

for the absolute values of the coefficients of the aggregated equation and its right hand
side than to restrict the size of multipliers w, and w2 . In some cases this can be achieved

by increasing the absolute value of one of the multipliers.

N o t e 2. The proof of Theorem 2 discloses that the validity of this theorem requires the

left hand sides of equations (1) and (2) to take integer values, which is crucial for the
proof. On the other hand, the proof does not rely on the signs of the variables or their

integrality, or on the linearity of the left hand sides of the aggregated equations (1) and

(2). That means that there is an analog of Theorem 2 that is valid for establishing integer
equivalent aggregations of systems of a more general nature.

Let Y beasetofanarbitrarystructureandletS,-M-S1 (y), i=1, 2 bereal

integer - valued functions defined for arguments y e Y. Consider a system

(la) S1(y)=alo, yeY,

(2a) S2(y) = a2, y C Y,

and define

(7a) U, =max(max S(y), ao), L, =min(min S,(y), a8o), i=1,2.
74Y' 741'

"Then we may state

T h e o r e m 2a. The equation

(3a) w1S. (y) + w2S2 (y) =ao

is equivalent to the system (1 a) - (2a) if w, and w2 are relatively prime integers that

satisfy any pair of conditions (C!, C2 ), i.e., (C*, C;), and relation (9) is valid.

If i = j in the pair ( C-, C), then w3. can be given an arbitrary integer value,

relatively prime with w.
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N o t e 3. In the proof of Theorem 2 the values UL and 4 were used for determining

lower bounds for the absolute values of the multipliers w, and w2. These bounds in general

can be relaxed by obtaining smaller values for U, and larger values for L, , i = 1, 2.

Define

(10) U, =max(nax Si, a.o) st. (-l)"S,5. <(-1)"[ao -(-l)"sgn(wj)wj], i=1,2,

where a = l-i+s+[((+sgn(w)]/2, and the symbols i and s refertoindexes of

the condition C;., (according to (8) Uj is contained in condition C;_,., ). The same

constraints apply also for determining L, i = 1, 2,

(11) L, = rrmin(in S,, ao) s.t. (-l)as., •5 (-l)G[a.o -(-l)asgn(w,)w,], i = 1,2.

Then the following theorem is valid

T h e o r e m 2b. The equation

(3a) wS, (y) + w2S2 (y) = a.

is equivalent to the system (1 a) - (2a) if w, and w2 are relatively prime integers that

satisfy any pair of conditions ( Cj, C*•), i.e., ( C.;, C;), when U, and L, are

determined by (10) and (11), respectively, and relation (9) is valid.

If i = j in the pair ( C,, C .), then w3., can be given an arbitrary integer value,

relatively prime with w,. #

C o m m e n t. Theorems 2, 2a and 2b integrate some ideas expressed in (3], [4] and [6].

In Theorem I the stipulation on w, was used to rule out q > 0. The case q < 0

was eliminated by the condition on w2. In Theorem 2 conditions C., and C,;

respectively serve the same purposes. From this observation it follows that the aggregation

will be valid also under the proper combination of the conditions of Theorem 1 and

Theorem 2. This conclusion constitutes the content of the following result.

Th e o r e m 3. If w, and w2 are relatively prime integers, then equation

(3) or (3a) is equivalent to system (1) - (2) or (la) - (2a), respectively, if any one of

conditions C. replaces the stipulation on w, in Theorem 1, or if any one of

conditions C.- replaces the stipulation on w2 in Theorem I.
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__ § 3. Application to a Special Class of Equations.

We will now show how Theorems I and 3 can each be applied to generate the

special results of [3] for aggregating the system of equations

(12) xj=b, jeN,-

where b is a positive integer. (In the case b =1 we have the result of [2].)

The interest in aggregating this system is that the xj variables can be replaced by any

functions f, (x) that have nonnegative integer values for x e X, thereby making it

possible to replace the equations

fJ(x) =b, j e N,

by a single equivalent equation. We state the corresponding result of [5] in an equivalent

but slightly different form

T h e o r e m 4(5]. Define

(13) d") =-[(b +1) -(b+t)n-i]/b, jeN,

64ý = [(nb - 1)(b + 1)4 + 1] /lb.

Then,for n>l the equation

(14) 1 d ='x-
jaN

has the unique solution, given by (14), when the x, variables are constrained to

nonnegative integers. *

To show that Theorem 4 is actually a consequence of Theorem 1, we take

X = fx > 0 and integer ), X' = X2 = X and make use of the following identities:

(i) dj• = [(b+l)i - 1]/b,

( ii) d5') =(b+l)d(-•, for I5j<q

It is easy to show that Theorem I yields (14) for n = 2. As (1) and (2) consider

the following equations

(15) x, =b,

(16) x2 =b.
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The definitions of X and XV imply X: =X', k=l,2. Equations (15) and (16) imply

the following inequalities (15') and (16'), which we take as (1') and (2'):

(15') X, <b,

(16') x,• b.

The smallest value of w, satisfying (4) is obtained by taking x, = b + I, which implies

w, =b +1. Then the smallest value of w2 consistent with condition (5) and relatively

prime with w, is obtained by assuming x"= b + 2, which implies w2 =b +2.

These values of w1 and w2 lead to the aggregating equation (as (3))

(b + l)x 1 + (b + 2)x, = [(2b - l)(b + 1)
2 + 1] / b,

which is (14) for n = 2.

In general, using mathematical induction, we take (1) to be (14) for n = q -1, (2)

to be x. = b, X = [x > 0 and integer }, X' = X' = X and show that Theorem I

implies: (3) is (14) for n =q.

By Theorem I w, - x1 and the smallest value of w1 consistent with condition (4)

is obtained by taking x,= b + I (since x, 5 b), which gives w, = b + 1. According to the

relation (5)
= di~q-1)x:,"+ d•,-Ox,,+.. +d,!-o-,,

w2 q- 1 .-

Coefficients d,(-' for j = 1, 2,..., q - 2 are divided by (b + 1). To obtain w2 relatively

prime with w, = b + 1 it is necessary to take xq1 # 0 and it suffices to choose a value of

x.-_ that yields

dq!-t )x" = I mod(b + 1)

or
dq(q-t) = bmod(b+ 1).

q-1 q-1

As it can be seen from ( i ) for an arbitrary b the last inequality is obtainable and this

occurs only for x", = b. So we assume x," , = b. According to (5) x" should violate

(1"), which may be taken in the form x, < b for any j = l,2,...,q-2.The smallest of the

coefficients dq-u' is dl''. To obtain a smaller value for w2 we take x•"= b+1
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and 4X= x=...= x,_2=0. Thus w 2 =dt'=(b + 1)+ dqb = d•€). The last inequality is

obtained with the use of identity ( i ) and the definition d•'•, (15). Further (3) and the

identity ( ii ) immediately yields (16) for n = q.

Now we shall derive Theorem 4 from Theorem 3.'Renumber the variables

x, in (14) in the reverse order by introducing index p = n -j+ 1 and define

(17) c = -dm 1, for p=1,2,...,n.

Then (14) may be written as

(18) ) = - =do"

jaN

Noting n - j = p - I (13) implies

(19) c( = =1[(b +l)t-(b+ )-']/b =(b+l)P-'[(b+l)"-P' -lI/b.

Then the relation

a' -I = (a- 1)(a"'-' + a"-2 +...+1)

for a=b+l and m=n-p+l gives

[(b +)-' - l]/b = (b+ I)' +(b+ ''+...+(b + 1) + I

and from (19) it follows

(20) C(") = (b + I)-' + (b + I)- 2 +... +(b + I)'-' = X(b+ l).
k~p-,-

The last relation implies the following identities

(ii)c() = (b + I)",

(iv) c?=(b+l)I+cq-') for I<p'<q.

We shall follow again the reasoning of mathematical induction. As can be seen by

substitution for n = 1, (18) has a single solution x, = b. To obtain (18) for an arbitrary

2 < q < n consider the following system of two equations

'I

(21) fc,(cp x, =CO(I-€-1)

(22) XI + X2+...+ x, = qb ,
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where (21)is (18) forn=q- Iand is taken as (1) in Theorem 3, and (22) is takenas

(2) in Theorem 3. Relation (22) is equivalent to x,= b, w-,re, by mathematical

induction, it is assumed that equation (21) has a single solution:

x, =b for p = 1,2,..... q-l. As imthe proof of Theorem 3 select w,=L Then

q-1 4

(23) U, = max c ')x, subject to <x, :qb-l.
p-! p-I

The largest coefficient among CP'q-' is c1- From (17) and (13)

c14-0 -'-,-t" = [(b +1)q-l-11/ b,

In addition, the constraint in (23) implies

q'-I q

P. x, P- 1 , -

and from (23) it follows that U, - c, -•(qb- 1). Further

(24) w2 > U, - a,, = c- (qb- 1) - -(b + I)q-1 - q.

Finally we require w,=Yc, ,)x andselect x- =0 for p=l,2,...,q-2 and
P-1

x = b +I. This choice of x" provides the smallest possible value of w2, which meets

condition (5) of Theorem I (violating x.-t < b as (I°)) and satisfies (24), because as a

result of the identity ( iii ) W2 = c, 1 (b + l)=(b+l)'-. Weights wt=l and

w2=(b+l)q-' for (21)and (22)and the identity (iv)lead straightforwardly to (18)

for n = q.

Concluding Observation.

It is important to note that the results of [11], [2] and [5] for aggregating the
system of n integer - valued equations were obtained from considerations which
essentially differ from the approach outlined in §2, in which equations are aggregated step
by step two equations at a time. In [1], (2] and [5] for the first time in the literature,
analytical formulae were given for weights corresponding to each equation of the system
to be aggregated ( in [2] and [5] for common equal right hand sides and in [1] for the
general case of arbitrary right hand sides). The results presented in this last section reveal
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the existence of a tight linkage between the two different approaches to the problem of
aggregating integer - valued equations.
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1. Background.

Recent developments have shown the value of integrating metaheuristic approaches
with special methods for generating new neighborhood structures, called ejection chain
methods, and with processes derived from connection models embodied in neural networks.
We focus on the implications and consequences of such integrated procedures, with particular
attention to the tabu search framework. At the same time, we establish relationships between
this framework and that of other metaheuristics, demonstrating ways to enhance "population
combining models" (which include genetic algorithms) and "threshold based models" (which
include simulated annealing), drawing on search paradigms from tabu search that offer ways
to extend these other approaches. We also report developments by which tabu search has
provided advances in the uses of neural network models in optimization. Computational
studies are cited that confirm the practical merit of these advances.

2. Ejection Chain Processes.

Ejection chain methods give a useful way to build compound neighborhoods, with the
goal of generating more powerful moves for solving discrete optimization problems. Ejection
chains combine and generalize ideas from a number of sources, including classical alternating
paths from graph theory, network related base exchange constructions in matroid optimization,
and bounding form structures for solving integer programming problems. Each of these
embodies a related theme whose incorporation into neighborhood search offers new
approaches to combinatorial optimization applications.
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An ejection chain is initiated by selecting a set of elements to undergo a change of
state (e.g., to occupy new positions or receive new values). The result of this change leads to
identifying a collection of other sets, with the property that the elements of at least one must
be "ejected from" their current states. State-change steps and ejection steps typically
alternate, and the options for each depend on the cumulative effect of previous steps (usually,
but not necessarily, being influenced by-the step immediately preceding). In some cases, a
cascading sequence of operations may be triggered representing a domino effect. The ejection
chain terminology provides a unifying thread that links a collection of useful procedures for
exploiting structure, without establishing a narrow membership that excludes other forms of
classification.

A number of methods deriving from this perspective recently have appeared in the
literature. A node (or block) ejection procedure has been proposed by Glover (1991a) for
traveling salesman problems, and extended to provide new approaches for quadratic
assignment and vehicle routing problems. Laguna, et. al., (1991) introduce an ejection chain
approach in conjunction with a tabu search procedure for multilevel generalized assignment
problems, and demonstrate that ejection chains even of "small depth" produce highly effective
results in this context. Ejection chain strategies are also proposed for clique partitioning of
Dorndorf and Pesch (1992), similarly yielding good outcomes.

Recently, ejection chain strategies have been developed for traveling salesman
problems that are founded on the notion of creating a reference structure to guide the
generation of acceptable moves (Glover, 1992a). Such a structure can be controlled to
produce transitions between tours with desirable properties, generating alternating paths (or
collections of such paths) of a non-standard yet advantageous type. These paths yield a
combinatorial leverage effect which provides solutions that are best among exponential
numbers of alternatives, by the investment of a low polynomial degree of effort.

In particular, special algorithms enable solutions dominating O(n25) alternatives to be
obtained with 0(n2) effort, and solutions dominating O((n/2)!) alternatives to be obtained with
0(n3) effort. We show tabu search strategies provide a way to extend the application of these
results, leading to new solution procedures not only in the TSP setting, but also for a much
broader collection of graph and network-related problems.

3. Links with Other Methods.

Relevant ways to visualize relationships between tabu search and other procedures like
simulated annealing and genetic algorithms provide a basis for understanding similarities and
contrasts in their philosophies, and for creating potentially valuable hybrid combinations of
these approaches. We suggest how elements of tabu search can add a useful dimension to
such approaches, drawing on observations from Glover and Laguna (1992). We assume the
reader has a modest familiarity with the general form of these approaches as a foundation for
the following discussion.
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Simulated Annealing. Undoubtedly the most prominent contrast between simulated
annealing and tabu search is the focus on exploiting memory in tabu search that is absent
from simulated annealing. The introduction of this focus entails associated differences in
search mechanisms, and in the elements on which they operate. Several elements in addition
to memory are fundamental for understanding the relationship between the methods. We
consider three such elements in order of increasing importance.

First, tabu search emphasizes careful probing of successive neighborhoods to identify
moves of high quality, employing candidate list approaches. This contrasts with the simulated
annealing approach of randomly sampling among these moves to apply an acceptance
criterion that disregards the quality of other moves available. (Such an acceptance criterion
provides the sole basis for sorting the moves selected in the SA method.) The relevance of
this difference in orientation is accentuated for tabu search, since its neighborhoods include
linkages based on history, and therefore yield access to information for selecting moves that
is not available in neighborhoods of the type used in simulated annealing.

Next, tabu search evaluates the relative attractiveness of moves not only in relation to
objective function change, but also in relation to factors of influence. Both types of measures
are significantly affected in tabu search by the differentiation among move attributes, as
embodied in tabu restrictions and aspiration criteria, and in turn by relationships manifested in
recency, frequency, and sequential interdependence (hence, again, involving recourse to
memory). Other aspects of the state of search also affect these measures, which depend on
the direction of the current trajectory and the region visited.

Finally TS emphasizes guiding the search by reference to multiple thresholds, reflected
in the tenures for tabu-active attributes and in the conditional stipulations of aspiration
criteria. This may be contrasted to the simulated annealing reliance on guiding the search by
reference to the single threshold implicit in the temperature parameter. The treatment of
thresholds by the two methods compounds this difference between them. Tabu search varies
its thresholds non-monotonically, reflecting the conception that multidirectional parameter
changes are essential to adapt to different conditions, and to provide a basis for locating
alternatives that might otherwise be missed. This contrasts with the simulated annealing
philosophy of adhering to a temperature parameter that only changes monotonically.

Hybrids are now emerging that are taking preliminary steps to bridge some of these
differences, particularly in the realm of transcending the simulated annealing reliance on a
monotonic temperature parameter. A hybrid method that allows temperature to be
strategically manipulated, rather than progressively diminished, has been shown to yield
improved performance over standard SA approaches, as noted in the work by Osman (1992).
A hybrid method that expands the SA basis for move evaluations also has been found to
perform better than standard simulated annealing in the study by Kassou (1992).
Consideration of these findings invites the question of whether removing the memory
scaffolding of tabu search and retaining its other features may yield a viable method in its
own right. A foundation for doing this by a "tabu thresholding method" is described in
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(Glover, 1992b), and is reported in a study of graph layout and design problems by Verdejo
and Cunquero (1992) to perform more effectively than the previously best methods for these
problems.

Genetic Algorithms. Genetic algorithms offer a somewhat different set of
comparisons and contrasts with tabu seawch. GAs are based on sele~cting subsets (usually
pairs) of solutions from a population, called parents, and combining them to produce new
solutions called children. Rules of combination to yield children are based on the genetic
notion of crossover, which consists of interchanging solution values of particular variables,
together with occasional operations such as random value changes. Children that pass a
survivability test, probabilistically biased to favor those of superior quality, are then available
to be chosen as parents of the next generation. The choice of parents to be matched in each
generation is based on random or biased random sampling from the population (in some
parallel versions executed over separate subpopulations whose best members are periodically
exchanged or shared). Genetic terminology customarily refers to solutions as chromosomes,
variables as genes, and values of variables as alleles.

By means of coding conventions, the genes of genetic algorithms may be compared to
attributes in tabu search, or more precisely to attributes in the form underlying certain TIS
measures of frequency based memory. Introducing memory in GAs to track the history of
genes and their alleles over subpopulations would provide an immediate and natural way to
create a hybrid with TS.

Some important differences between genes and attributes are worth noting, however.
Differentiation of attributes into from and to components, each having different memory
functions, do not have a counterpart in genetic algorithms. This results because GAs are
organized to operate without reference to moves (although, strictly speaking, combination by
crossover can be viewed as a special type of move). Another distinction derives from
differences in the use of coding conventions. Although an attribute change, from a state to its
complement, can be encoded in a zero-one variable, such a variable does not necessarily
provide a convenient or useful representation for the transformations provided by moves.
Tabu restrictions and aspiration criteria handle the binary aspects of complementarity without
requiring explicit reference to a zero-one x vector or two-valued functions. Adopting a
similar orientation (relative to the special class of moves embodied in crossover) might yield
benefits for genetic algorithms in dealing with issues of genetic representation, which
currently pose difficult questions (see, e.g., Liepens and Vose (1990)).

A contrast to be noted between genetic algorithms and tabu search arises in the
treatment of context, i.e., in the consideration given to structure inherent in different problem
classes. For tabu search, context is fundamental, embodied in the interplay of attribute
definitions and the determination of move neighborhoods, and in the choice of conditions to
define tabu restrictions. Context is also implicit in the identification of amended evaluations
created in association with longer term memory, and in the regionally dependent
neighborhoods and evaluations of strategic oscillation.
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At the opposite end of the spectrum, GA literature characteristically stresses the
freedom of its rules from the influence of context. Crossover, in particular, is a context
neutral operation, which assumes no reliance on conditions that solutions must obey in a
particular problem setting, just as genes make no reference to the environment as they follow
their instructions for recombination (except, perhaps, in the case of mutation). Practical
application, however, generally renders this an inconvenient assumption, making solutions of
interest difficult to find. Consequently, a good deal of effort in GA implementation is
devoted to developing "special crossover" operations that compensate for the difficulties
created by context, effectively reintroducing it on a case by case basis.

The chief method by which modern genetic algorithms and their cousins handle
structure is by relegating its treatment to some other method. That is, genetic algorithms
combine solutions by their parent-children processes at one level, and then a different method
takes over to operate on the resulting solutions to produce new solutions. These new
solutions in turn are submitted to be recombined by the GA processes. In these versions,
pioneered by Muhlenbein, Gorges-Schleuter, and Kraimer (1988) and also advanced by Davis
(1991) and Ulder, et al. (1991), genetic algorithms already take the form of hybrid methods.
Hence there is a natural basis for marrying GA and TS procedures in such approaches. But
genetic algorithms and tabu search also can be joined in a more fundamental way.

Specifically, tabu search strategies for intensification and diversification are based on
the following question: how can information be extracted from a set of good solutions to
help uncover additional (and better) solutions? From one point of view, GAs provide an
approach for answering this question, consisting of putting solutions together and interchang-
ing components (in some loosely defined sense, if traditional crossover is not strictly
enforced). Tabu search, by contrast, seeks an answer by utilizing processes that specifically
incorporate neighborhood structures into their design.

Augmented by historical information, neighborhood structures are used in TS as a
basis for applying penalties and incentives to induce attributes of good solutions to become
incorporated into current solutions. Consequently, although it may be meaningless to
interchange or otherwise incorporate a set of attributes from one solution into another in a
wholesale fashion, as attempted in recombination operations, a stepwise approach to this goal
through the use of neighborhood structures is entirely practicable. This observation provides
a basis for creating structured combinations of solutions that embody desired characteristics
such as feasibility (Glover, 1991b). The use of these structured combinations makes it
possible to integrate selected subsets of solutions in any system that satisfies three basic
properties. Instead of being compelled to create new types of crossover to remove deficien-
cies of standard operators upon being confronted by changing contexts, this approach
addresses context directly and makes it an essential part of the design for generating combina-
tions. The current trend of genetic algorithms seems to be increasingly compatible with this
perspective, particularly in the work by Miihlenbein (1992), and this could provide a basis for
a significant hybrid combination of genetic algorithm and tabu search ideas.
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4. Recent Advances Using Tabu Search in Neural Networks.

Our examination of linking tabu search and neural networks in optimization derives from
joint work by J. Chakrapani and J. Skorin-Kapov (1992a, 1992b, 1993). There are both
benefits and challenges associated with using a massively parallel computer
architecture for tabu search, as applied to-solving NP hard combinatorial problems. Our
starting point for addressing these issues is a connectionist model for solving the quadratic
assignment problem (QAP), obtained by modifying Boltzmann machine used by Aarts and
Korst (1989). This leads to a massively parallel tabu search algorithm for the QAP. imple-
mented on the Connection Machine CM-2.

Not only is the connection machine extremely interesting as a massively parallel
computer architecture for solving combinatorial optimization problems arising in different
engineering applications, some optimization problems are also created in the attempt to use
the machine as effectively as possible. Depending on the application, the communication
time is not triviai. For the QAP, 55% of time is spent on interprocessor communication,
which stems from a dynamic communication pattern. There is another class of applications
for which the communication pattern is static, i.e. the memory locations defining the source
and destinations of messages do not change, only the communicated data changes. In such
applications, considerable time can be saved by allocating processors to chips according to the
structure of their communication pattern (Dahl, 1990). A tabu search approach to the
mapping and scheduling problem successfully improves communication time on a massively
parallel system, as demonstrated by computation results on some data sets from the literature.

Connectionist models are constructed to follow the analogy with neural networks in
the human brain, and consist of nodes representing neurons, and arcs representing a pattern of
connectivity among the neurons. An activity level is associated with each node, and weights
or connection strengths are associated with each arc. Activity levels and connection strengths
can change according to functions directing the system's behavior. Depending on the values
an activity level may take, connectionist model are classified as analog or binary. Boltzmann
machines are connectionist models employing binary activity levels, determined probabi-
listically according to the Boltzmann equation.

With the proper setting of connection strengths, one can establish the equivalence
between the objective function of a combinatorial problem and the function governing the
behavior of the connectionist model. In such a case the equilibrium points of the system's
function correspond to the local minima of the underlying combinatorial problem.

Instead of using simulated annealing to escape from local optima (as in Boltzmann
machines), we have designed a related connectionist model in which tabu search is used.
This represents the first study replacing simulated annealing with tabu search in a
connectionist model, and the first study involving dynamically changing connection strengths
for such problems. The results on the set of QAPs from literature show that a connection
model based on tabu search performs better than such a model based on simulated annealing.



240

The connection model itself, though, still does not yield a framework for producing a method
as effective as direct heuristic algorithms for the QAP that also utilize tabu search. The
inefficiency is due to the fact that any binary matrix is a feasible configuration for a model,
and in order to reach a permutation matrix ( i.e. a feasible solution to the QAP), large bias
connection strengths are needed, which in turn result in poor solutions to the QAP. In order to
'marry' the idea of massively parallel connectionistic approach, and the success of swap
moves for the QAPs (which restricts the search to the feasible configurations only), we have
progressed to the design of a massively parallel pairwise exchange algorithm implemented on
the Connection Machine CM-2.

Apart from designing an elaborate algorithmic strategy using various elements of tabu
search (e.g. aspiration, diversification, intensification and varying tabu list sizes), a straight-
forward implementation on the Connection Machine, obtained by identifying a pairwise
exchange with a processor, produces a very inefficient utilization of both time and memory.
On the other hand, an efficient implementation requires a fine grain decomposition of the
problem into small identical subproblems suitable for data-level parallel computing. Assum-
ing n*n processors, such a decomposition results in only a logarithmic increase in time per
iteration as a function of the size of the problem. The logarithmic factor theoretically comes
from finding the maximum of n numbers with n processors, which in CM-2 is done by the
hardware, and is not significant (e.g. the time increases by 0.1 or 0.2 seconds as the problem
size grows from 42 to 100). If the number of processors available is smaller than the
neighborhood size, virtual processing is invoked, which requires increased time per iteration,
opening possibilities for designing new strategies to handle larger problems.

After successfully solving QAPs of size up to 100, two questions remain: (1) How to
'push' the problem size even further, (2) How to use massively parallel computer architecture
to gain more understanding of the tabu strategy itself. We undertake to give answers to these
questions by addressing the problem of mapping tasks to processors in a multiprocessor
system, in order to minimize communication time. We assume that communication among
tasks follows a static pattern, and that all processors are identical and all tasks are similar.
We stipulate that the number of processors equals the number of tasks, by introducing
"dummy" tasks if there are more processors. The case where there are more tasks is treated
within a virtual environment as if there are enough processors so that each task can be
mapped to a single processor.

We therefore distinguish between the physical nodes of the multiprocessor system and
the processors themselves. Each node may contain more than one processor (virtually or
otherwise). Processors in the same node can communicate among themselves with minimal
time spent in communication (assumed to be zero). Communication time for processors in
different nodes is dependent on the architecture of the system. We approximate the commu-
nication time between two processors by the number of links that a message has to travel
(dilation) and the total communication time by the sum of the individual dilations. Note that
even when there are only two nodes, and the communication pattern is a graph with unit edge
weights, the problem is NP-hard.
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We formulate the problem as a quadratic assignment problem of mapping n tasks to n
processors. Denote by D the distance matrix between processors and by F the matrix
representing the communication between tasks. Such a formulation is general enough to
cover different architectures and different communication patterns. Since this would be a
preprocessing routine to an application, emphasis should be given to fast algorithms. Also,
since the application will run on a parallel machine, parallel algorithms are preferable to
reduce sequential bottlenecks.

We develop a heuristic algorithm based on tabu search for handling this problem. The
heuristic employs a simple choice rule and neighborhood structure of iteratively selecting a
pair of tasks in a greedy fashion, and swapping the processors to which they are mapped. In
our parallel implementation two levels of parallelism are employed. First, the candidate tasks
to be swapped are identified in parallel. Second, more than one pair of tasks is swapped in a
single iteration. The computed effect of a single swapping is based on the assumption that no
other swapping takes place at the current iteration. When performing multiple swaps, the
cumulative effect of the swapping may not correspond to the sum of the individual effects.
We show how this can lead to an inferior performance and illustrate the elements of our
heuristic that makes it robust under these circumstances.

The heuristic is tested on the hypercube architecture, and implemented on CM-2.
Computations are performed on data originating from finite element application and of size
ranging from 8000 up to 64000 tasks. The result yields a new form of connection approach
deriving from an integration with tabu search, and overcomes limitations of earlier connection
models in this setting. We anticipate the value of integrating tabu search with connection
models for additional types of applications in the future.
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Abstract

Recent advances in computing technology have created a situation where we can
solve larger problems than we can understand. This is true for most linear
programs, and it is becoming increasingly true for nonlinear and integer forms. In
addition, model management can be confounded by large models, especially when
they are eclectic. To deal with this bottleneck in productive use of mathematical
programming for decision support, a research project began in 1985 to develop an
Intelligent Mathematical Programming System (IMPS).

Some of the problems we address in the IMPS project are:

"* Find a reformulation that simplifies the model.

"• Infer data relations that are necessary for the instance to be well posed (i.e.,
feasible and bounded).

" Give different views of the model, or an instance of it, that provide different
insights.

Answer questions of sensitivity: Wuat if.. ?, Why... ?, and Why not... ?
Furthermore, form responses in English, graphics and other forms under
user control.

* Provide aids for model debugging, such as why an instance is infeasible.

* Provide aids for documenting a model and scenarios.

The IMPS project is focused on producing new ideas for modeling and analysis
support and has produced new approaches to model formulation, management and
applications. After elaborating on this background, including our meaning of
intelligence and opportunities for creating an intelligent computing environment, we
present some examples of results, both positive and negative.

Analysis support is one of the areas the IMPS project has pursued extensively,
producing an advanced software system, called ANALYZE, which includes rule-
based interpretations of results. The results could be just a prototype instance
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without a solution, where analysis looks for reductions and embedded structures in

the interest of verification and documentation or other elements of model

management. The results could be optimal solutions of scenarios, where analysis

not only answers conventional sensitivity questions, but also probes more deeply

into the meaning of the results. The. results could be infeasible or anomalous, where

analysis is debugging the runs to diagnose the cause of the infeasibility or anomaly.

A more recent development is a new approach to the pooling problem, which is a

non-convex mathematical program, that gives exact answers to sensitivity questions,

rather than the usual methods based on Lagrange multipliers, which can give

erroneous answers. We shall demonstrate how this is done using computational

geometry.

One of the negative results, which we illustrate, is the use of neural networks for

assisting formulation. On the surface, the approach seems reasonable, but we failed

to find an appropriate neural net to represent the problems we describe. Although

this approach has not been abandoned completely, it has not worked so far,

particularly compared with other approaches we have taken, notably syntax-directed

modeling assistance.

After describing some of the results, both positive and negative, we summarize

current and future activities within the IMPS project. An extensive bibliography is
included to indicate the great amount of research and development activity that has

emerged over the past few years to address the problems in modeling and analysis.
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Abstract

When are two mathematical programs equivalent? That is the question addressed
in this paper. Since the beginnings of mathematical programming, people have
found reformulations of mathematical programs that have certain desirable
characteristics. Usually, the reformulation reveals a special structure, such as a
network, that speeds up the numerical optimization. More recently, interest in
reformulation is motivated by other characteristics, such as for better model
management or understanding results more deeply for the decision problem
represented by the mathematical program.

The usual way in which one establishes equivalence between the original
formulation and another one is to provide mappings between the two formulations
that preserve feasibility and optimality. We demonstrate that this mathematical
approach to equivalence provides only a necessary condition, not a sufficient one, by
showing that it also makes equivalent mathematical programs that really have no
relation to each other. Besides the mathematical approach, which has been used for
decades, there is a linguistic approach that has emerged more recently. Whereas
the mathematical approach provides a necessary condition, the linguistic approach
provides a sufficient one. The linguistic approach that has been proposed is too
strong to contain necessary conditions. In particular, it does not allow variable re-
definition, except in name. The first part of this paper elaborates on these
approaches and describes some difficulties with a formal definition of equivalence
through examples. Then, representative cases, mostly taken from the literature, are
presented in order to build an intuition about equivalence.

The second part considers operational definitions of equivalence and examines their
scope. The necessary condition of mappings, taken from the mathematical
approach, is included, but a key difference pertains to separation of data from
structure. Our motive for having a formal definition of equivalence is to create an
artificially intelligent environment for modeling, where model matching can aid an
initial formulation, and reformulation can be automatic.



Vladimir A. Gurvich

Extremal integer sequences with forbidden sums

Extended Abstract

1. Basic notions and notations. Let Z, = {,2-,,} be the set

of the integer positive numbers, s = (s, s 2 ..... s) be a finite

sequence of numbers from Z, , then let f t(s) be the length,

n(s) = s, + S 2+...+ st be the sum and m(s) = n(s)/lts) be the mean

of the sequence s . The sequence s' will be called an interval of s

and denoted as s'; s , if there exist the numbers i , j E Z.

such that 1:5i s jSt(s) and s' =(s, , si ... , s).

Then let F 5 Z÷ be a finite set called the set of the forbidden

sums. The sequence s will be called F-excluding if it does not

contain an interval which sum belongs to F . We denote by EX(M; F)

the set of all the F-excluding sequences of the length I , that is

(1) EX(M; F) = (s I t(s) = t and n(s') E F V s' C s).

We denote by Gex(F) the infinite F-excluding lexicographically

minimal sequence and by Gex(t; F) its initial interval of the length

t ."The greedy algorithm" realizes Gex(F) by induction. Successively

for each I = 1, 2.... the sequence Gex(t; F) is obtained from

the sequence Gex(t - 1; F) by adding the minimal number Si E Z,

such that (s,, + st,÷+ +...+ st) 9 F for any t's t . In particular

(2) Gex(t'; F) r Gex(t; F) c Gex(F) V t, 1' e Z, I t' s f

In the present paper we shall study the following two functions

(3) gex(t; F) n(s) , where s = Gex(t; F) and

(4) ex(t; F) min (n(s)I s E EX(; F)) ,

realized respectively by the lexlcographically and additively minimal

F-excluding sequences of the length I

2. Extremal sequences with forbidden sums and the extremal graph

theory. We can obtain a natural generalization if we replace a set
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of the forbidden sums F by a set of the forbidden intervals .

But the most of the results given below will not generalize this case.

If 5 = W(F) := isI n(s) e F) then we obtain our problem.

Note an apparent analogy between ex(t; 9) and the function with

the same name studied by extremal graph theory; see for example 11].

Then the function ex(t; F) is analogous to that considered in [2).

3. Basic results.

Theorem 1. Both functions ex and gex are uniform, that is

(5) ex(it; iF) = i ex(e;F), gex(it; iF) = i gex(t;F) V i, t, F,

where iF := (ial, Ia2 .... iam) provided F = (a,a 2 .... am) ; see §7.

Theorem 2. The ratio gex to ex can be estimated by inequalities

(6) 1 5 gex(t; F)/ex(t; F) 5 (#F + 1)/2 V t, F,

which can not be sharpened for any #F. In particular, if #F = 1 then

the equation gex(t;F) = ex(f;F) holds and if #F > 1 then the second

inequality in (6) can be replaced by the strict one; see §§ 4.2, 4.7.

Theorem 3. For any F the sequence Gex(F) is quasiperiodical,

that is some its infinite interval is periodical; see § 8.

The symmetrical sets defined by the condition

(7) 3 n = n(F) I a E F o n - a E F .

will play an important role. For the symmetrical sets we shall give

an asymptotically exact estimation of the functions gex and ex

in other words we shall determine the limits

(8) m (F) = lim (ex(t; F)/t) and

m (F) = lim(gex(t; F)/t) for f * .

Theorem 4.The limits (8) exist for any F . In the case of

a symmetrical F they are realized by two periodical sequences

such that in each one the sum of all the numbers in each period

is equal to n(F) ; see § 6.1.

In particular condition (7) holds for #F = 1 and #F = 2
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Theorem 5. For any set F there exists a symmetrical set F'

(respectively F') such that F 5 F' (respectively F 5 F'),
g g

functions ex(f; F) and ex(t; F') (respectively gex(t; F) and
gex(t; F')) are asymptotically equivalent and realized by the same

g

periodical sequence. Moreover n(F') is always equal to the sum

of some two different numbers from F

But n(F') can be much greater; see § 4.6.
g

4. Examples. 4.1. For the set F = (1,2,...,j) we obtain

Gex(F) = (j+1, j+l,...) = (j+1)'; Gex(C; F)) = (j+l)t; EX= (Gex);

ex(t; (1,2,...,j)) = gex(! ; (1,2 ... ,j)) = Xj + 1)

m(l,2,....j) = m (1,2,....j) = i + 1 ;g

ex(it ; (i,2i1....ji)) = gex(ie ; (i,2i.....ji)) = itj + 1)

The last formula demonstrates that the functions ex and gex

are uniform; see §§ 3,7. In particular for i j = I we obtain

ex(t; (0)) = gex(t; ()) = 2t ; Gex(t; (M)) ( 1 -1(t + 1)

4.2. Let F = (i) be the single-element set. Then

ex(t; (i)) = gex(t; (i)) 2i [t/iJ + I (mod i)

Gex((i)) = (1&1(i+1))= ; m(i) = m (1) = 2 .g

4.3. Let F be an arbitrary set of odd numbers. If 1 E F then

Gex(F) = (2,2, ... ) = (2 )" ; ex(t; F) = gex(t; F) = 2t V I.

In any case m(F) = m (F) 2 . The exclusion of odd sums isg

analogous to the exclusion of subgraphs which chromatic numbers

are not less than 3; see (11.

4.4. The functions ex and gex can be different and even

asymptotically not equivalent. The simplest examples are given

by the sets (4,7), (4,9), (5,8).

Gex(4,7) = (1 1 1 8 )' = (13 8 )' , m (4,7) = 11/4
g

Gex(4,9) = (13 52)¶, Gex(5,8) = (14 9)0, m (4,9) = m (5,8) = 13/5.
g g

At the same time m(4,7) = 11/5 , m(4,9) =m(5,8) = 13/6.
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The functions ex(e; (4,7)), ex(t; (4,9)), ex(!; (5,8))

are asymptotically realized respectively by the periodical sequences

(1 2 3 3 2) , (1 2 3 2 3 2 )", (1 2 1 3 3 3)0

which contain no intervals with forbidden sums. Note that

ex(5i; (4,7)) = 11i ; ex(6i; (4,9)) = ex(6i; (5,8)) = 13i V i

4.5. According to Theorem 3, for any set F the sequence Gex(F)

is quasiperiodical, that is Gex(F) = (s°(F))(s (F))M and the initial
g g

interval s°(F) can be not empty. For example,
g

Gex(2,4,7) = (1 5)(3) ; Gex(3,6, 10) = (1 1 7)(4 1 4 4)=

Gex(2,11,12) = (1 3 1 3 1 5)(4 4 1 4 1 3 1 4 1)=

Introduce the notations n 9(F) = n(s 9(F))M, (F) = 9(sM(F)). Then

m (F) = mrs (F)) = n(s (F))/(s (F)) = n (F)/l (F).
g g g g g g

4.6. The sequence Gex can have a "very long" period. For example,

Gex(3,7,10) = ((1 1 4) 8 (1 4 1) 8 (4 1 1) 1l)w, m (3,7,10) = 15/4;g

Gex(3,8,11) = (1 1 4 1 9 4 1 1 4 9 1 4 1 1 12 ), mg (3,8,11) = 18/5;
g

Gex(4,9,13) = ((M3 5) 10 (12 5 1) 10 (1 5 12) 10 (5 13) 14)M

Gex(j, 2ji + 1, 2ji + j + 1) = (((lj-J (j + 1))' (2ji + 2)

(lj- 2 (j + 1) W)' (2ji 1 2)... (IJ-m (j + 1) lm-')i (2j1 + 2)...

.1 (j + 1) lJ 2 )i (2ji + 2) ((j + 1) lj-j)i (2j1 + j + 2))w =

= ((nm1i (( 1 j-m (j + 1) !m-1)i (2ji + 2))) @ j )',

where the sign @ means that j is added to the last number

of the word. Thus for F = (j, 2ji + 1, 2ji + j + 1) we obtain

n (F) = j(4ij + 3), t (F) = j(ij + 1), mg (F) = 4 - 1/(ij + 1).

In general we have no good upper estimate for nfg(F) and t 9 (F)
If the set F is symmetrical then n (F) is a divider of n(F).

4.7. "Big ratios" gex/ex are realized by the arithmetic

progressions F = (2i, 41 - 1, 6i - 2 ..... 2ji - j + 1) that have

the length #F = j , the step 2i - 1 and the initial number 2i .

Then Gex(F) = (12 1- 1 (2j1 - j + 2))* and ex(t; F) is asymptotically

realized by the periodical sequence (1 2 (2-2 3 0J 2 1-1)0. Thus
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n (F) = n(F) = 2ij+2i-j+l , t (F) = 2i , f(F) = ijti-j+lg g

m (F)/m(F) =(F)/t (F) (j+l)/2 - (j-1)/(2i)g g

gex(no; F) / ex(no; F) = (j+1)/2 - (j-l)/(2i) where

no = 1 (F) I(F) n(F) = 21-(ij+i-j+l) (2ij+2i-j+l) ;

(j+l)/2 - (j-1)/(2i) (j+l)/2 provided i c ; j = #F

4.8. Let us explain some notations of §§ 4.1-4.7. The sequences

Gex and Ex E EX are given as words in the alphabet 7

Some intervals are marked by the parentheses. The power i

over a parenthesis means that the corresponding interval is repeated

i times. The power over the last parenthesis can take the value 00

5. Minimal F-excluding, absolutely F-excluding and F-critical

sequences; the asymptotic realization of the function ex

by an infinite periodical sequence.

5.1. A finite F-excluding sequence s will be called minimal

(mFe) if it realizes the value of the function ex , that is if

n(s) = ex(e(s); F).

Lemma 1. Any mFe sequence s realizes a lower estimate

m(F) r m(s) = n(s)/e(s)

Proof is based on the following evident but important inequality

(9) ex(it; F) z i ex(f; F) V i. , F.

Thus for any i, 1, F we obtain

ex(it; F)l(if) a i ex(,!; F)I(it) = ex(t; F)!! = n(s)/!(s) = m(s).

5.2. A finite sequence s will be called absolutely F-excluding

(aFe) if the infinite periodical sequence (s)0 is F-excluding.

Any aFe sequence is F-excluding but not vice versa.

Lemma 2. Any aFe sequence s realizes an upper estimate

m(F) :5 m(s) = n(s)l/(s)

Proof. For any i, t, F we obtain ex(I(s); F) s n(s);

ex(it(s); F) s in(s); ex(iR(s); F)/(ie(s)) : in(s)/(it(s)) = r(s).
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Lemma 3. The following eight properties of the finite sequence s

are equivalent:

f) s is aFe ; fV) (s)' is F-excluding;

b, b') (s)' is aFe for any (for some) i Z,

c, c') the sequence a-(s) is aFe for any (for some) cyclic

permutation a- of the sequence s ;

d) the inverse to s sequence i is aFe

e) for any number a e F and interval s' 9 s the following

inequalities hold: n(s') * a (mod n(s)) and n(s') * (-a) (mod n(s)).

5.3. A finite sequence will be called F-critical if it is

mFe and aFe simultaneously. Lemmas 1 and 2 result in

Proposition 1. For any F-critical sequence s the equation

m(F) = m(s) holds. Thus s realizes the asymptotically exact estimate

of the function ex(f; F).

5.4. Let s be an arbitrary aFe sequence such that m(s) = m(F).

Then as a rule the sequence (s)' will be F-critical for some i E Z..

For example the sequence Q3 3 4)0 is F-critical for the set

F = (1,8,9) if i = 5 , but not for i : 4.

A PC-program of computations of W(F) was realized by S. Tarassov.

This method is rather efficient but unfortunately sometimes it fails.

The simplest example is given by the set F = (1,2,6,11). In this case

there are infinitely many aFe sequences that realize the value

m(F) = 4 ; for example, ( 4 )M, (3 4 5)0, (3 5 4), (3 4 3 5 5 )*,
((3 4 3)(5 4 3)1(5 4 5))0 V i E Z. etc.; see Lemma 3. However neither

these sequences nor their powers are not mFe. Really let us consider

infinite quasiperiodical sequence (3 4 3)(5 4 3)0. Inequality m(s) < 4

holds for any initial interval of s . For the considered set

F = (1,2,6,11) there exists no F-critical sequence at all.

5.5. However according to Theorem 5 the value m(F) can be

determined by the following formula
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m(F) = min (m(F')I F': F C F'E SYH , n(F') s 2max(aI a E F)).

In other words, the minimum of m(F') is taken over all

the symmetrical sets F', that contain the set F and satisfy to

the inequality n(F') : 2max(Ala E F).

In the next section we shall see that it is not difficult

to determine the values m and m in the case of symmetrical sets.g

6. Symmetrical sets of the forbidden sums.

6.1. Let F be a symmetrical set; see (7). Consider the set

of all the sequences which sums are equal to n(F) , that is

SN(F) = isI n(s) = n(F)).

Lemma 4. A sequence s E SN(F) is F-excluding if and only if

it is aFe.

Denote the corresponding subset of SN(F) by SNE(F). Chose in

SNE(F) the lexicographically minimal sequence s and an arbitraryg

sequence s of the maximal length. Let f(F) : &•s), t (F) : t(s ).gg

Evidently t(F) ? t (F).g

Proposition 2. The sequence s is F-critical and Gex(F) = (s )0g

This statement results in the equations

(10) m(F) = n(F)/t(F) , m (F) = n(F)/t (F)g g

Thus the periodical sequences (s)" and (s )w asymptotically

realize the functions ex and gex respectively. Note that by

the definition n(s) = n(s) = n(F) in accordance with Theorem 4.
g

6.2. Let N(F) : {1, 2, ... , n(F) - I) and G := N(F) - F .

Evidently the set G is also symmetrical and N(F) = N(G), n(F) = n(G).

Theorem 6. For any symmetrical set the following inequality holds

(11) n(F) = n(G) ý t(F) t(G)

Formulae (10) and (11) result in

(12) m(F) = n(F)/t(F) k t(G) , m(G) = n(G)/t(G) ý t(F)

(13) m(F) m(G) = n2/(tXF) t(G)) 2 n(F) = n(G).
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Proposition 3. For any set F we obtain

(14) m(F) = m (F) = 1 if F = o; 2 s m(F) : m (F) if F * 0.g g

Proof for a symmetrical F immediately results from (12).

6.3. Any set F such that #F 5 2 is symmetrical. The case #F = I

was already considered in § 4.2. Let F= (i, j) , then n(F) = i + j

According to Theorem 1 both functions ex and gex are uniform.

This statement results in the following equations

(15) m(i, j) m(ik, jk), m (i, j) = m (ik, jk) V i, j, k E Z.

Then nWi, j) = m (i, j) = 2 , if both numbers i and j are odd:g

see § 4.3. Thus without a loss of generality we can assume that

f) j z i ; b) GCD(i,j) = 1 ; c) i is even, j is odd or vice versa.

Proposition 3. The following formulae hold

n(i,j) n (i,j) = i+j ;g

U(i,j) L(i+j)/2J ; e (i,j) = L(i+j)/2J - L(j-i)/2J(mon i)

where a(mon b) := min (b(mod a), -(b+l)(mod a)) E {O,1.....ra/21-1}

m(i,j) = n(i,j)/e(i,j) = (i+j)/[(i+j)/2J = 2 + 1/L(i+j)/2J ;

* 9(i,j) = n (i,j)/i (i,j) = (i+j)/([(i+j)/2J - L(j-i)/2J(mon i))

m (ij)/m(i,j) = 1 / (1 - ((L(j-i)/2J(mon i))/L(i+j)/2J) < 3/2g

The upper estimate 3/2 can not be sharpened; see § 4.7.

The important peculiar property of the case #F = 2 is

the uniqueness of the F-critical sequence. More exactly

Proposition 4. For any i , j there exists the unique

(up to the cyclic permutations) (i,j)-excluding sequence s that has

the length e(s) = Li+j)/2J and the sum n(s) = i + j

7. Proof of Theorem 1 (sketch). Fix an arbitrary sequence

S = (s , s2..... sI ) and number i E Z. Consider the sequence
Si := ((I)'- I(S 1i-i+l) (1)1-1(S 2 i-i+l) ... (W1)-(sti-i+l)).

Evidently eUsi) = i t(s) , n(si) = i n(s) , m(si) = m(s).

The sequence s is a) F-excluding, b) mFe, c) lexicographically

minimal F-excluding if and only if the sequence si is respectively
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a') iF-excluding, b') m(iF)e, c') lexicographically minimal

iF-excluding. Let us prove for example the implication a) 4 a').

For any j = 1,2 ..... e the following equations and inequalities hold

s J i-i+l > i(s.-1) (S.-i+-l) + 2(i-1) = i(s.+1)Jl1 < i(s,1).

Thus if for an interval s' g si the sum n(s') is a multiple of

i , then s' = si" , where s" is an interval of s . But n(s") 9 F

because the sequence s is F-excluding. Thus ins') ints") 9 if .

Consider also the implication b) -ý b'). The sequence s is mFe.

We shall prove that si is mniF)e. It is proved already that si

is iF-excluding. Assume that it is not minimal, that is there exists

a sequence s' such that os' = it and n(s') \ in(s). Consider

all the initial intervals s, c s' and numbers ncs')(mod i)
3

j = 1. 2...,, it. There are it numbers which take only i values.

There are two possibilities: either each value occurs exactly t times

or there is a value that occurs not less then t+1 times. In both cases

in s' we can outline t successive disjunctive intervals which sums

are multiple to i . Replace each interval by the corresponding sum.

We obtain a sequence s" such that L(s") = t and n(s") < n(s).

Moreover the sequence s" is F-excluding because s' was

(iF)-excluding. But the sequence s was mFe . Contradiction

8. Proof of Theorem 3. Introduce the set of sequences

(16) S(F) = Is I n(s) ý max (al a E F) > ncs') V s' • s).

It is finite. At the same time the sequence Gex(F) contains

infinitely many intervals from S . Consequently Gex(F) contains

two equal intervals s'2 s". Then the interval between the beginnings

of s' and s" is the period of Gex(F). It will be clear if we

compare the definition of S(F) by (16) and the definition of Gex(F)

by the greedy algorithm; see § 1,

The author thanks S. Tarassov for the PC-program computing ex
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1.Introduction

The use of the interior point method (IPM) for the solution of linear programming (LP)

problems provides a number of benefits which are summarized below. For large or highly

degenerate LPs IPM is usually faster than the simplex solver. Whereas simplex based

algorithms require considerable adaptation and control parameter tuning from one model class

to another, default settings of IPM are sufficient to process a wide class of LPs. IPM is not

only robust in this way, its progress is not hindered by the degeneracy or the stalling problem

of the simplex; indeed it reaches the "near optimal" solution very quickly. Simplex

algorithms, in contrast, are not affected by the boundary conditions which slow down the

convergence of IPM. The fast initial convergence of IPM to a near optimal solution can be

followed up by the superior near optimal to optimal convergence of simplex algorithms to

create an hybrid IPM-simplex system.

In this paper we review the current use of IPM for the solution of integer programming (IP)

problems. We extended our hybrid IPM simplex system (Levkovitz et al. 92) and investigate

the role of the IPM within a simplex based branch and bound (B&B) algorithm to discrete

programming. An IPM based heuristic is developed whereby the IPM search includes a non-

integrality penalty for the discrete variables. The IPM solution is than used to determine

an alternative tree search criteria for a simplex based B&B algorithm.

The rest of the paper is organized as follows. In section 2 we review the use of IPM for

solving IP problems within the branch and bound algorithm. In section 3 we outline our
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proposed heuristic for finding a good starting IP solution. In section 4 we describe the

integration of the IPM solution in the B&B algorithm.

2. Interior Point Method in the.-B&B algorithm

Since the branch and bound (B&B) algorithm creates LP sub-problems that are closely

related to each other, a sub-problem is solved by using an optimal basis of a previously

solved problem. In this way, the solution of a sub-problem requires only few simplex

iterations. A similar efficient warm start procedure for IPM, however, is not yet available

(Lustig et al. 90).

The use of IPM in the solution of IP problems was examined by several researchers notably

Karmarkar et al. (89) Kamath et al. (89, 91) Mitchell and Todd (91), and Mitchel and

Borchers (91). We identify several theoretical advantages of IPM when used in the context

of the B&B algorithm. The key advantage of IPM is the ability to reach a near optimal

solution or to determine in a relatively short time that such a solution does not exist. If a

primal dual algorithm is used, the near optimal solution also provides an upper and a lower

bound for the optimal solution at every iteration. A sub-problem can be abandoned (and

consequently the branch of the tree in B&B) if the problem is found to be infeasible or if the

previously found integer solution is lower than the dual bound. Further, the quick

convergence to the solution means that individual variables reach their near optimal value

quickly and then converge steadily to the optimal one. This allows the use of indicator

functions to distinguish between the dormant variables which converge to their bounds (to

an integer solution) and the active variables which remain fractional (El-barki et al 91). The

smooth convergence of variables to their optimal value mean that a convergence to a

fractional value (active variable) can be discovered early in the iterative process. Using this

information we can decide if the problem should be solved to optimality or terminated early.

Another important advantage of primal dual IPM is the generation of the solution points by

following the path of centres, (Levkovitz 92). The path of centres can be perturbed in a

way that will attract it to feasible integer lattice points.

Consider the following pure 0-1 integer programming problem:
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min crx
s.t. Ax=b (2.1)

X 1E(o,1), V•ENI

where N, _ (1,_.. n), the set of indices of the binary variables.

The linear relaxation of this problem and its corresponding dual problem are:

Primal: Dual:

Min c Tx Max b Ty-u Tw
s. t. Ax=b s. t. A ry~z-w=c (2.2•

,,, x+s=u, x'szO wz2O
0.,sj,x/.1, VjEN 3

where, A ER", x,s,w,z~c,ueRA, y,beR'.

Borchers and Mitchell (91) solves (2. 1) by applying a specially designed B&B algorithm

which utilizes the primal dual predictor corrector IPM to solve the generated sub-

problems. The algorithm starts by solving the LP relaxation of (2.2). The optimal

solution of this problem provides a lower bound for the best integer solution that can be

found. The algorithm then chooses the first sub-problem by using a 'depth first' search

tree. Other sub-problems are chosen according to their estimated objective function value

such that the sub-problems with lower estimation are solved first.

For every sub-problem. the following operations are carried out:

Algorithm 2.1

1. Restart the sub problem from a previously saved IPM solution.
2. Solve the LP sub problem until c x-b ryu rw <0. I

Ib ry-u TwI

If infeasibility is detected in the process then STOP

3. If bry+ u rw > I where t is the best integer solution found so far then STOP

4. Declare which variables are fractional by using the following indicators: let k + I

be the current iteration of the IPM algorithm then if one of the .following



260

conditions holds the 0, 1 variable is declared fractional:

k* kl k& kl

I, W,

1:1-11T- <0.1, -- <0.6,t LJ<0.6.t

Mitchell and Borchers implemented this algorithm and compared it to an alternative

algorithm that uses cold start 1PM and solves every sub-problem to completion. These

two algorithms are also compared to the IP module of IBM/OSL (Forrest and Tumlin 90).

The preliminary results show that although the algorithm presented above is superior to

an algorithm that uses IPM in a simple form, it is still inferior to the OSL/IP algorithm.

Analysis of the results show that the performance gap is created by a combination of a

longer processing time for sub-problems and a larger number of sub-problems processed

in the IPM algorithm.

3. An IEPM based heuristic for finding an integer starting point

In our investigations, we use the primal dual IPM in a heuristic to find a fasible or a

near feasible starting point for pure 01 IP problems. This method is designed for

inclusion in a combined IPM/B&B algorithm where the primal dual iteration data is used

as decision criteria in the B&B framework. In our method we try to encourage the binary

variables to converge to their bounds by augmenting the objective function with a penalty

function on the binary variables that remain fractional. In addition, to avoid the stalling

boundary behaviour of IPM, the variables are shifted such that the required optimal

solution is in the interior of the LP feasible region.

By this approach, the movement of a variable towards the binary solution can be detected

and the binary variables can be fixed to their appropriate value earlier. The heuristics

fixes the binary variables one by one while attempting to maintain primal feasibility.

Consider the pure 01 IP problem presented in (2.1). We reformulate the problem in the

following way : Let 0.,:<1, jeN, be the relaxation of the binary variables

xE(0,1 1, jEN,. These variables are shifted by e>0 in the following way:

VjENi XJ=e+-f1 "0 e:.XJ1;+6. (3.1)
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This requires the update of the right hand side values

b=&+At, t jEN, (3.2)
otherwise

The bounds of the new variables are further relaxed such that

VjNl l=O, uu=l+2xe, e>O. (3.3)

It is clear that a solution to the relaxed problem is feasible for the original problem if the

variables that represent the binary variables are fixed to either e or e + 1.

To achieve this end, we augment the objective function with a penalty function based on

the sum of fractions:

minc Tx+Mx E (xJ-E)x(1+E-X),
JEN, (3.4)

where big M is a weight such that M>c Tx

The solution process of the new problem is described in algorithm 3.1:

Algorithm 3.1: 1PM heuristic for finding an IP solution

.linitialize: Calculate the first feasible point for the LP relaxation problem in (2.2).

2. Execute IPM (predictor corrector).
If (all the binary variables are fixed or infeasibility is detected) then STOP

3. Find a variable forfiing v EG: x, =r, in(min{ Ix,-eII}minJ II+E-x)
JlG jeG

4. Remove the variable from the problem
if Ix,-e II+E-x,I then x,=e else x,=l+e

set G=G\fvl, A=A\(a,), b=b-exa,, c=c\(c,1
5. Reinstate the dual problem

6. Go to step 2

The procedure described in algorithm 3.1 continues until all the integer variables are

fixed or if it is established that the heuristic does not lead to an integer feasible solution.
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In both cases the last feasible solution is converted to simplex using the basis retrieval

procedure. Preliminary results of our heuristic on a small set of problems with binary

variables are presented in Table 3.1 The first four columns give the model name,

number of rows, number of columns and number of binary variables respectively. The

columns marked 'LP sol' and 'IP sol' give the optimal LP solution and the best integer

solution respectively. The column marked IPMH presents the result of running the IPM

heuristic to termination. The last column in the table indicates the sum of infeasibilites

where 10' is the feasibility tolerance. These results, although preliminary, indicate that

the use of IPM as an alternative heuristic to generate a first feasible integer solution in the

branch and bound procedure offers some advantages.

Model Rows Cols Binary LP Sol IP Sol IPMH Inf.
Gray2 35 48 24 185.55 202.3 241.55 10or

Grav9 63 96 48 256.61 280.95 312.75 104

Sam1 8 15 15 80 125 130 0

Sam2' 46 67 21 24 0 375.0 565.0 10W

Glbmod 292 422 98 .204*10' .207*10' .208*108 10.s

Bpgasl' 211 75 12 -6.79 -5.91 -5.53 10"

Feasible solution not ound -- -

Table 3.1 Result of IPM integer heuristic

4. Using IPM within B&B to Construct a Good Starting Solution

The integration of IPM and simplex has become a leading applied research topic in the area

of large scale LPs, see for example (Forest and Tomlin 90) and (Levkovitz 92). The

integration at the level of IP tree search with IPM, however, has not been considered or

reported so far. In section 2, we noted that the results reported by Borchers and Mitchell (91)

are not comparable to those of OSL, mainly because IPM cannot be efficiently warm-started

to re-optimise a series of sub-problems. Taking advantage of our basis recovery procedure

mainly from IPM to simplex and also making use of a fixing agenda (fix-mix) given by the

discrete solution obtained by IPM heuristic, we have created the following procedure for

constructing a partially specified search tree (Hajian 92).
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The choice of a variable which is partitioned to discrete values for creating the corresponding

subproblems and the choice of a sub-problem taken together determine the structure and size

of a search tree. We added to our existing B&B solver an algorithmic facility by which a

part of the search tree is created rapidly from an initial agenda of the global entities. Such

an agenda may be obtained from various sources such as: (i) an existing schedule in case of

scheduling, (ii) applying an IPM heuristic described in section. (iii) rounding off a quasi

integer solution, or by any other means.

A given agenda does not necessary provide an integer feasible solution but it has to be a

near feasible integer solution in order to provide any benefits. A B&B code which is

designed to take advantage of a partial or a full agenda of discrete variables may perform

more efficient tree search than the one without such a facility. !t is obvious that, using a

given integer feasible solution in a B&B saves the time spent on the heuristic for obtaining

the first integer solution. We call this procedurefix-mix which is equivalent to warm-starting

the B&B algorithm. To fix-mix procedure is described in algorithm 4. 1. In this algorithm

tcp is the value of a possible integer feasible solution (if one gained), trp is the given integer

feasible (or near feasible) solution in the fix-mix agenda.

Algorithm 4.1 Fix-Mix (Hajian 92)

0. Initialize: Solve the first LP relaxation problem. If the solution is integer feasible then
STOP.
else set the lower bound on the objective function to 4Ip (if one exists).

1. Fix: If the fix-mix agenda is empty then go to step 4, else choose a variable from
the fix-mix agenda and fix it to the appropriate value.

2. Store Create a subproblem by fixing the variable in previous step to its
complementary value and store the subproblem together with the current basis
in the stack.

3. Solve Solve the current subproblem. If (the solution is integer feasible and the
objective function value tp: li~p > t'fp ) or (the solution is not integer) then
go to step 1.

4. Execute the standard B&B algorithm.
The flow chart of Algorithm 4.1 is illustrated in figure 4.1
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L solve LP

In.eRereeyesn

Snoye

Tno

bChoose an xj from agenda

DFix xj.1

I

rLP solver
no

SInteger?

Syes
no yes

Better Sol? Update

Figure 4.1 The B&B algorithm with Fix-Mix
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1 Introduction

In this paper we consider the problem of maximizing a linear function over a convex, compact set,
defined be convex functions. A logarithmic barrier cutting plane algorithm is developed for solving
such problems. Like other cutting plane methods, a linear relaxation of the convex programming
problem is generated in each stage of the algorithm. Instead of solving these relaxations, we just try
to follow their central path with a long-step logarithmic barrier method. If the next iterate would
be out of the feasible region or close to the boundary, then we do not make the step. Then we add a
new constraint in the point (or"close" to it) where the step violates a constraint. Obviously, this way
we combine Interior Point Methods (IPM's) with some new cutting plane (decomposition) method.
As it is known that a convex programming problems is in fact a semi-infinite programming problem,
therefore our algorithm can be regarded as an IPM for semi-infinite programming problems.

The first, and still probably the most popular, cutting-plane algorithm for convex programs was
developed by Kelley [11]. Here an LP relaxation is solved and an infeasible point is generated in each
step. Kelly's method does not work well in practice. The so-called "central cutting plane methods"
of Elzinga and Moore [2] and Goffin and Vial [4] are considered quite efficient (see e.g. Kortanek
and Ho [14], Goffin, tlaurie and Vial [3] and Bahn, Goffin, Vial and Du Merle 11]. They calculate
a certain "center" of the LP relaxation. If the center is feasible, then they add an objective cut, if
the center is infeasible, then a new separating hyperplane is generated. Therefore these methods
generate feasible and infeasible points during the algorithm, although this might not be the case.
Contrary to these methods, our algorithm remains in the interior of the feasible set.

The third area to be considered in this paper is the theory of IPM's. Karmarkar (12] has initiated
the explosively developing field of IPM's. These methods not only have theoretical interest, but
are practically efficient, especially for large and degenerate problems. Jarre [10], Nesterov and
Nemirovski [15] and Den Hlertog, Roos and Terlaky [7, 8] generalized logarithmic barrier methods
to smooth convex programming.

In (6] a build-up strategy for the long-step logarithmic barrier method for LP is presented. In (9]
the effect of adding and deleting constraints in the logarithmic barrier method for LP is studied.
These algorithms start with a (small) subset of the constraints, and follows the corresponding
central path until the iterate is close to (or violates) one of the other constraints. In fact, to be

'This work is completed under the support of a research grant of SHELL.
'On leave from the Eitvos University, Budapest, and partially supported by OTKA No. 2116.
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more precise, if some slack value si satisfies si < 2-1, for some 'proximity' parameter t, then tile
i-th constraint, if not already in the current system, is added to the current system. This process
is repeated until the iterate is close to the optimum.

As far as notations are concerned, e shall denote the vector of all ones. e, the i-th unit vector and
I the identity matrix. Given an m x n matrix A, its columns are denoted by ai, i = 1,...n. Given
an n-dimensional vector s we denote by-3T the transpose of the vector s and the same notation
holds for matrices. Finally JIsII denotes the 12 norm.

We will consider the following convex programming problem.

(CP) max bry
s.t. yEY.

where y,b E R" and

F:= {y E R' :f,(y)<O, 1< < n}.

The functions f1(y), 0 < i < n, are assumed to be convex. Without loss of generality we may
assume that the objective function is linear and we also assume that Ilbil = I and Y is compact.
Further we assume that -0 , the interior of F, is not empty. This condition is equivalent to the
Slater condition used by Elzinga and Moore [2].

2 Central Cutting Plane Algorithms

The essence of central cutting plane algorithms can be given as follows.

Central Cutting Plane Algorithm

Input:
P is a convex polytop such that F C P.
z is lower bound for the objective value on Y.
( is any small number, the stopping tolerance.
r is initially a large number (the distance of the center to the boundary).

begin
while ( < r do

Compute (approximately) the "center" yl of the polytope P n {y bTy _Z;
r := bTYC - z'

if yc f T, then Feasibility Cut;
else Objective Cut;

endif
end

end.

Objective Cut

begin
z := bTyc, the new objective cut will be

bry T Y.

end.
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Feasibility Cut

begin
fi(yC) > 0, i.e. f, is a violated constraint. Add the cut

fc) + Vf(yC)(Y _ yC) < 0

to the current system. P :=Pf { y : f(yc) + Vf,(yc)(Y - yC) : 0}
end.

Modifying Elzinga and Moore's [2) proof of convergence, we can give a convergence proof for Goffin
and Vial's (4] central cutting piane method. We will assume, that an algorithm is available to find
the appropriate center in these algorithms. Up to now in the implementations of the algorithm of
Elzinga and Moore the simplex method was used to find the center (14] (using the simplex method
is not essential, IPM's can be used as well), while Goffin and Vial used the projective method [1].

The convergence proof is based on the following observation. Sonnevend [17] proved, that for any
polyhedron P C IR'• there exist two ellipsoids E and E' with E' = mE such that yc + E C P C
yC + E', where y' is the analytic center of the polytop. Now let us inscribe a sphere into P. It is
obvious, that the radius of the largest inscribed sphere is larger or equal than the smallest axis of
E and not greater than the smallest axis of E'.

Elzinga and Moore [21 calculate the "ball center" of the actual polytope. This is defined as the
center of the largest inscribed sphere. Formally, for a polyhedron {y : ATy :_ C}, the ball center is
the solution of the following LP problem at iteration k:
O"• = max{' : aTy+ 1ailca < c,, i = n,

Goffin and Vial [41 use the so-called "analytic center" [171 of the polytope. The analytic center is
the unique maximizer of the logarithmic barrier function:
ma~x{ZE 1l log(ci - aT.) y) < c},

Let pk be the smallest radius of the largest inscribed ellipsoid, centered at the analytic center at
iteration k. (It is known [17] that there exists always an inscribed ellipsoid centered in the analytic
center, and pk ak < rnpk for a given polyhedra.) The following can be proved.

Theorem 1 (i) For the sequence of the generated centers {y*}'=, the sequence converges to
zero.
(ii) If 1 E .T then there exists a , > 0 such that 9 is 0 feasible for any constraint cut.
(iii) Iflimk&... pk - 0 and z < z" then there is a k such that uk E 7F for all k > k.
(iv) If z < z' then every convergent subsequence converges to an optimal solution.

3 A Logarithmic Barrier Cutting Plane Method for
Convex Programming

We remind some well-known results for path-following methods for LP [16]. We also use similar
ideas then that are used in the Build-Up and Down algorithm of [9]. The algorithm and its analysis
is based on the results about the effect of adding and deleting constraints in logarithmic barrier
methods, studied in [6, 9].

Now we present our cutting plane algorithm for convex programming problems, which is a straight-
forward application of the Build-Up and Down Algorithm of [6]. Therefore we try to solve subse-
quent LP relaxations of (CP). The LP problem under consideration is always the actual relaxation
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(localization) of (CP). Tile algorithm starts from an interior feasible solution. Then, as in path-
following methods line searches are performed in the Newton direction of the logarithmic barrier
function of the actual LP problem. If the new iterate violates a constraint or is "close" to its
boundary, then we stay in the previous point and a new supporting hyperplane is added to improve
the approximation. If the current iterate is centered, with a careful deletion rule we try to eliminate
redundant constraints and so keep the size of the LP relaxation as small as it is possible.

We assume, that box constraints are included in the problem and index set J refers to the index
set of the box constraints. The algorithm goes as follows.

A Logarithmic Barrier Cutting Plane Algorithm

Input:
P is convex polytop (the initial LP approximation) such that Y C P;
p := p0 is a barrier parameter value:
f, is a convergence parameter;
0 is a reduction parameter, 0 < 0 < 1:
Q is an initial index set of the (linear) constraints of P;
y E YO is a given interior feasible point such that 6Q(yp) < I;

begin
while p > 2-' do

begin
Delete-Constraints:
P := (1 - O),;
Center-and-Add-Cut

end
end.

Procedure Delete-Constraints

Input:
t d t> 4 is a 'deleting' parameter;

begin
for i := 1 to n do

ifiEQ\J and s, >- Idthen
begin

Q := Q {}
if pj >__ then Center-and-Add-Cut;

end
end.

Procedure Center-and-Add-Cut
Input:
t. is an 'adding' parameter;



270

begin
while 6Q(y,p) > 1 do

begin
i:= Y;

&:= argmax,>0 {fQ(y + OpQ,/u): si - aaTpa > O,Vi E Q};

y := Y+ &pQ;
if 3k -fk(y) < 2-'- then Add-Cut

end

end.

Procedure Add-Cut
Input:

SE F and y V Y or y is -close" to the boundary of F;

begin
If y V F then yb is the boundary point of F on the line segment (ý, y);
If y E Y then y/b is the boundary point of Y on the halfline ý + t9(y - ý), tO > 0;
fk is a constraint with f(k(y') = 0;

a I:= )II' -- ll=h(b)I ,
P := Pn ( : a Y < 7)

end.

About Convergence

Up to now we could not get a rigorous proof for convergence. The key problem is how to prove
that an inner cycle is finite. Namely, if we are centered, then the barrier parameter is reduced. The
problem is to prove that after a finite number of iterates we will be centered again. To prove this,
probably the results of Den Hertog, Roos and Terlaky (8, 9] can be used.

A straightforward convergence proof for a variant of the above algorithm can be obtained by using
the results about the discretization of semi-infinite programming problems (see e.g. Gustafson [5]).

Comparing with Other Cental Cutting Plane Methods

Kelley's 1111 cutting plane method generates generates infeasible points and it is known to be
instabile, inefficient in practice. Elzinga and Moore's (2] central cutting plane method eliminates
these disadvantages. Centering ensures some stability and at least some of the iterates are feasible,
therefore the algorithm might be stopped earlier with some useful information in hand. Kortanek
and No [14] reports some encouraging computational results. They also used the simplex method
to solve the LP relaxations. The central cutting plane method of Goffin and Vial [4) has the
advantages of Elzinga and Moore's method. They calculate the analytic center of the polytop with
the projective algorithm. The analytic center has some nice properties, which predicts that this
method might be even more efficient than the cutting plane method of Elzinga and Moore. Good
computational results are reported in (1].

Our method shares the advantages of the above central cutting plane methods. We we start from
a feasible point and feasibility is preserved while try to follow the central path of the actual LP
relaxation. This provides the centering component in our approach and provides also rtability
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as above. By adding new cuts, the actual center moves in the opposite direction, but the change
cannot be arbitrarily large (see [8, 91). The same holds if a loose cut is deleted. The main difference
comparing with the other approaches is that in the other central cutting plane methods the LP
relaxation is fixed while the new center is calculated. We dynamically refine the LP approximation
of (CP) in the iterations as we try to get close to the central path.

4 Computational Experience
The implementation of the Logarithmic Barrier Cutting Plane Algorithm was developed to run
both in a PC environment (using Microsoft FORTRAN) and in a mainframe platform. The results
presented below were computed using FORTRAN on an IBM 3090-200e with vector processing.
Similar results (in terms of iteration counts and solution accuracies) are also found on workstation
or by the PC based system.

About the Test Problems

We solved 19 test problems. The first 14 problems, taken from (14, 11, are examples of geometric
programming problems. The exponential variable transformation (ti = el") is used for each of the
problems thereby eliminating the need for explicitly maintaining the positivity constraint 4, > 0.
Also the objective functions for each of these problems has been made linear. The final 5 problems
are examples from (13]. Problems 15,16, and 18 are geometric programs; problem 17 is a semi-
infinite program. The majority of the problems which we investigated were small enough to allow
an initial feasible point to be found through inspection. Problems 10, 11, 12, and 13 required the
use of phase 1.

About the Implementation

In this subsection we discuss several of the important implementation techniques we used in devel-
oping our path-following cutting plane system for solving CP. This discussion will center around
the main activities performed by the system:

"* generating of search directions;
"* linesearching and generating cuts;
"* determining an initial interior point;
"* setting the required parameters;
"* terminating the algorithm.

Computational Results

Although the results presented here originate from our system running on the IBM 3090-200e,
similar results may be found with the system on the PC and workstation environment.

There are several points which we wish to highlight from Table 1. First there seems to be a
remarkable consistency in the major iteration counts listed. This consistency is a direct result from
the strategy we use to reduce the log barrier parameter p. A truer measure of the work required to
solve the problem may be found in the number of normal matrix formulations and factorizations
required to obtain a given level of solution accuracy. It is apparent that this measure indicates a
wide variance in the difficulty the algorithm had in solving the different problems.

Also in Table I we see that duality gaps of lOe-9 to 10e-12 can typically be achieved with this
method. Although machine accuracy is not obtained, the method presented here does consistently
and significantly outperform the method of [141 and our results are also better than presented in [1)
in terms of solution accuracy. Note that for problem 13 our method had difficulties obtaining the
usual level of precision; a gap of only 9.4e-7 was possible. In this problem, there was an enormous
range on the coefficients which exacerbated the numeric difficulties.
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Table 1: Problem Results Overview

Prob. f Rows Col's M ax. Number of I Average Duality Total
No. j Q Size Major Matrix f Recenter Gap CPU

Iters. Factor. { Steps Sec.

1 2 1 15 13 35 2.7 1.2e-12 0.04
2 4 2 25 13 51 3.9 1.8e-12 0.06
3 3 1 20 14 79 5.6 1.3e- 11 0.10
4 4 1 30 12 102 8.5 1.7e-10 0.17
5 11 3 60 12 120 10.0 5.7e-9 0.35

6 4 3 25 12 59 4.9 1.4e-9 0.07
7 8 7 45 15 87 5.8 4.0e-12 0.16
8 8 7 45 15 113 7.5 3.8e-12 0.21
9 7 7 56 14 190 13.6 4.7e-11 0.44
10 7 4 53 17 155 9.1 2.8e-9 0.33
11 7 ,1 5 18 153 8.5 4.5e-10 0.32
12 7 4 53 20 162 8.1 4.9e-11 0.36
13 10 7 94 15 242 16.1 9.4e-7 0.48
143 22 36 161 13 304 23.4 1.1e-9 1.78
15 2 2 10 13 28 2.2 7.2e-12 0.02

16 2 1 9 13 18 1.4 1.7e-12 0.02
17 2 oo 12 13 31 2.4 1.0e-12 0.06
18 3 3 15 13 34 2.6 6.le-12 0.03
19 3 4 15 14 44 3.1 2.2e-12 0.05 I
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1 Introduction

The efficiency of a barrier method for solving convex programs strongly depends on the prop-
erties of the barrier function used. A key property that is sufficient to prove fast convergence
for barrier methods is the property of self-concordance introduced in [17]. This condition not
only allows a proof of polynomial convergence, but numerical experiments in (1, 11, 14] and
others further indicate that numerical algorithms based on self-concordant barrier functions
are of practical interest and effectively exploit the structure of the underlying problem.

A well-known barrier function for solving convex programs is the logarithmic barrier function,
introduced by Frisch [4] and Fiacco and McCormick [3]. To describe the logarithmic barrier
function more precisely, we will first give a general form for the classes of problems considered
in this paper:

min fo(x)
(P) f1(z) ! 0, i = t,...0,1,

Ax = b,

where A is p x it matrix and b an p-dimensional vector. The logarithmic barrier function for
this program is given by Sfo(X)•bx ,= - n-ix)

P

where p > 0 is the barrier paramneter. We show that for several classes of convex problems for
which interior-point methods were presented in the literature the logarithmic barrier function
is self-concordant. These classes are: dual geometric programming, (extended) entropy
programming, primal and dual l,-programming. Since for dual geometric programming and
dual lp-programming no complexity results are known in the literature, these self-concordance
proofs enlarge the class of prol)iems for which i)olynomiality can be proved. (In 112] only a
convergence analysis is given.) Moreover, we show that some other smoothness conditions
used in the literature (relative Lipschitz condition [9, 7], scaled Lipschitz condition [25, 131,
Monteiro and Adler's condition 116]) are also covered by this self-concordance condition.

'The fourth author is on leave from the E6tv& University, Budapest. Research partially supported by
OTKA No. 2116.

Vrhis work is completed with thie support of a research grant from SHELL.
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These observations allow a unification of the analyses of interior-point methods for a number
of convex problems.

The article is divided in three parts. In Section 2 we give the definition of self-concordance
and state some basic lemmas about self-concordant functions. In Sections 3 - 6 we prove
self-concordance for the classes of problems treated in [5, 12, 231, and in Section 7 we show
that the smoothness conditions used in-[7, 9, 13, 16, 25] imply self-concordance of the barrier
function.

2 Some general composition rules

Let us first give the precise definition of self-concordance as given by Nesterov and Ne-
mirovsky (17]:
Definition of self-concordance: Let .7 be an open convex subset of 1W'. A function
V : F -- R is called K-self-concordant on F, K > 0, if w is three times continuously
differentiable in J' and if for all x E Y0 and h E 1R" the following inequality holds:

V3 V(x)[h, h, h] _< 2K (h'V•p(x)h)' ,

where V•3 p(x)(h, h, h] denotes the third differential of ' at x and h.

Intuitively, since V3'p describes the change in V 2p, and since V3'p is bounded by a suitable
power of V2'p, this condition implies that the relative change of V2'p is bounded by 2K.
The associated norm to measure the relative chanige is given by V2'(x), i.e. for h E IRn

the norm associated with the point x is 11h11v,2,•. := (hT 7 2'V (x)h)'/. (See [101 and [61 for
example, where also a brief analysis is given, showing that the property of self-concordance
of the barrier function of a convex program is sufficient to prove polynomial convergence. A
more detailed analysis that includes certain nonconvex progranis and that uses an additional
condition relating the first and second derivatives of V is given in [17].)

The following lemma gives some helpful composition rules for self-concordant functions. It
follows immediately from the definition of self-concordance.

Lemma 1 (Ncsterov and Ncminvovsky [17])

"* (addition and scaling) Lea Wp be Ki-sclf-concordant on .F,, i = 1,2, and PhP2 E IR then

pOip + P2S02 is K-sclf-concordanid on YO, n Y"20, where K = max{i- •,K.

"* (affinc invariance) Let 'p be K-sclf-concordant on .F° and let B(z) = Bx+b : jik _ R"

be an affine mapping such that IB(J1') fl n.F . Then 'p(B(.)) is K-self-concordant on
{x : B(x) EYr.

The next lemma gives a sufficient condition for an objective function f to guarantee that
f "combined" with the logarithmic barrier function for the positive orthant of NO" is self-
concordant.

Lemma 2 Let f(x) E C3 (.r) be convex. If there exists a P such that

lVnf(x)[h, h,hl < 5ahVP f(x)h A
.T(1
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Vx E 1 0 and Vh E 71", then

A(x) f(x) - ,lnx,
6=1

is (I + lf/3)-sclf-concordant on YO, and

O(v, x) =- ii(v - f(x)) - I nr x,

is (I + 1I3)-self-concordani oil J'. Here, 40 C JflX.F0 is the sci {(V, X) x xE F0 '> f (X)}.

Sonic discussion of property (1) may be useful. Let O(x) -- - I nx, be tile logarithmic
barrier for Itn. Observe that

-- = TIV.2kx)hL = I)lhll72sz).
.2:2

We recall that (as mentioned above) the canonical norm associated with some barrier function
0 at a point x is given by V7"k(x). Loosely speaking, property (1) tells us that for lIIhjiv2(.) =
1, the spectral norm of tile third derivative VTf is bounded by a multiple 13 of the spectral
norm of the second derivative V2 f. This property is defined in 117) as f being compatible
with 0, and, as we have seen, it implies self-concordance of the combined barrier functions
p and 4k.
Clearly, if f satisfies (1), then so does i-f for any (fixed) parameter /I > 0. in particular, this

implies that also the function f(.r)/1 t - F In x, is (I + .fI)-self-concordant. linally we note
that for any p~arameter q > 1, the above ptoof also holds true for -q In(v,- f(x)) - F=l In x,.
This observation call be used to p,'ove that for. the classes of prol)lemns considered in this paper
)mot only the logarithimmic barrier function but also the center function of Iluard [8] (also used
in e.g. 121, 9, 10, 6]) is self-concordant.

3 The dual geometric programming problem

Let {l1}k= ,..-.. be a partition of { 1,..,- n) (i.e. U.I = {I,., n) and 14 l/t =P9 for
k $ 1). The dual geometric programming problemm 12] is then given by

mill C"' + • • I• x, '- x Il

(VQP) Ax = b
x >0,

where A is an tiL x n matrix and c and( b are It- ai(l m-dineiisional vectors, respectively. For

this problem we can prove the following leummma.

Lemma 3 The logarithmic barrier function of the dual gcominetric pYl-gramminvq pwoblcm
(DVQ) is 2-self-concoMlant3 .

"3TIlis corrects a remark in [12], in which it is claimed flthat thme self-concordance property does not hold
(or this problemn.
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4 The extended entropy programming problem

The extended etropy programming problem is defined as

11rann cTx + E'=L g(xi)
(Erp) Ax = b

X > 0,

wherc A is an tit X n matrix and c and b arc 71- amid ,it-dimcnsional vectors, respectively.

Moreover, it is assumed that the scalar functions g, E C' satisfy Ig."(x,)I < ,'X(,) =

1, i,,t. This class of problems is studied in Ye and Potra [231 and Han ct al4 [5]. In the
casc of entropy p~rogramming we have g,(.c,) = I-, lII x,, for all i, and P, = I. Sclf-concordancc
for thc logarithmic barrier function of this problem simply follows from the following lemnma.

Lemma 4 Suppose that g(r, ') < A, < = I t, thie tlMe logarlihmic barrierif func-

lion for thc cxtendcd centropy polnlltlnlting prob1cm (In(CEP) is (I 4+ maxi K,)-slf-cocordall.

5 The primal l4,-programming problem
Let { 4}1_-,,...,, be a partition of { I, ,in} (i.e. U'=l = 1,-. ,7} and I f I =¢) for

k #5 ). Let p, > I, i= , ?It. Then thWe I1rimnal 11-programniming puroblem [18, 221 can be
formulated as

fJ" mnax 71"T X
(PE) a., +, x - C,,I + 1) 1 ! 0, k = 1,

where (for all i and k) -i, hA,, and Yj are n-dinensional vectors, and c, amid d&. are real nummubers.
Ncstcrov and Nemirovsky [171 treated it special casC of this plrol)Iemn, namely tile so-called lp-
approximation problem. We will reformulate (Pr-,) sich that all pi obleimI fimuctiomis remain
convex, conitrary to Ncsterov amd Nemiirovsky's reformilation.

In a first step, the primal l,-I)rogra 11n11miig problem cali he reforumlimlated as:

,Inax 7I') X

oE, t, .+ kbf. - , < 0, k = I,...

"1' -(2).i*7- +c7, <, z = l,..-,,,,
-a ,'x + ci <.

s>0.

In the same way as we will prove Lemma 5, it can be proved that the logarithmic barrier
function for this reformnulated I,,-programmnimg problem is (I + 4 imaxi P. -21)-self-concordant,
i.e. the comllcodIaIce jaalnlcter deIellmi(k oil p,. We cani ciilinimate this depenldenice ;s follows.
Replace the counstraints.%'," < 1, by the equivalent constraimmts ., < I", where 0 < r, := I ,

P.
an(d replace the (reduidant) constraitits .s > 0 by I > 0. So, we obtain the following
reforimumlated l4,-progratnining lprobllem:

"1In 15] it is conjectured that these problems do not satisfy the self-concordance condition. The lemma
shows that this conjecture is not true.
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max qTx

E, Ii-t" + bTx - dk < 0, k = 1, r

(,PC,) Sj i, t•. (3)at, -e <i s'i=l..MTI
-aTx + ci s sJ
>- 0.

Observe that the transformed problem has 4m+r constraints, compared with r in the original
problem (P4p). Now we have the following lemma.

Lemma 5 The logarithmic barrier function for the reformulated lw-programming problem
(P1e) is 1-self-concordant.

6 The dual 1p-programming problem

Let qj be such that -L + = 1, 1 < i < in, and let the rows of a matrix A be a,, i = i,
and the rows of a matrix a' be bk., k = 1, r. Then, the dual of the lp-programming problem
(P4C) is (se 1181-[221)

I m in c y + d Tz + Z L z .i, q,

(D4P) ATy + BTZ = 11

Iz > 0.

(If yj $- 0 and zk = 0, then zk.Yi1Zkj'1 is defined as oo.) The above problem is equivalent to

mil cm y + dTZ + EnL ±t,

'k <_ ti, i-Ek, km ,
yd~s

-Y < S (4)

ATy + BTZ = r
z>O

S > 0.

It can be proved that the logarithmic barrier function of this reformulated dual lp-programming

problem is (1 + 0 max,(qj + 1))-self-concordant. Again, the dependence on q9 can be elinmi-
nated: the constraints sr 

4
q,+1< t1 are replaced by the equivalent constraints t'z'+l >S_,

whcre 0 < pi < 1, and the redundant constraints s > 0 are replaced by i > 0. The
new reformulated dual lp-programming problem becomes:

minlcl y + Fdrz+ .j.

s i <tz'+I, i E l4, k= 1,...r
y~s

(V') -,Y_<, (5)
Ary +B -Tz =1
z>O

Ž 0.

Note that the original problem (D£p) has r inequalities, and the reformulated problem (D£'•)
4m + r. We now have the following lenma.
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Lemma 6 The logarithmic barrier fundcion of the reformulatcd dual 1,-programming problem
(VV2,) is 2-sclf-concodani.

7 Other smoothness Conditions

Relative Lipschitz condition

Jarre (9] introduced thc following relative Lipschitz condition (also used in e.g. (7]) for the
Hessian matrix of the problem functions f,(x), 0 < i < i, of (CP):

3M>0: Vv E1R1 Vx,x+hEFT'-:

IvT(V 2f,(X + h) - V2f,(X))VI < MIlhInv1TV 2f.(X)v, (6)
where H is the Hessian matrix of the corresponding logarithmic barrier function. As shown
in Jarre [101, if the Hessians of the problem functions f, of (P) fulfil this relative Lipschitz
condition with parameter A!, and if f, E C', then the associated logarithmic barrier function
is (1 + M)-self-concordant. (The converse is not true.) Moreover, in [10] it is shown that
the relative Lipschiitz condition for the logarithmic barrier function is equivalent to self-
concordance if the underlying function is three times continously differentiable.

Monteiro and Adler's condition

Monteiro and Adler [161 considered minimization problems with linear equality constraints
and a separable convex objective function on the positive orthant of if". The objective
function f(x) = Eig.(xi) must satisfy the following condition:

There exist positive numbers T and p such that for all reals x > 0 and y > 0 and all
i = 1,-..,n, we have

Using Lemma 2 and substituting y = x in the above condition, it is easy to see that g,
satisfies (1) with #3 = T, i.e. that the logarithmic barrier function for such a problem is
(1 + MT)-self-concordant. Using Lemma 2 we may simplify the condition of [161 to the
(weaker) condition that there exists a positive number T such that for all reals y > 0 and
all i = l we have

yg"(y)l<T'(x).

This condition is not only simpler, also the dependence on some extra parameter p is elimi-
nated.

Scaled Lipschitz condition
In [25] and [13] interior-I)oint methods are given and analyzed for problems with linear
equality constraints and convex objective function f(x) on the positive orthant of 17?n. The
objective function has to satisfy the following scaled Lipschitz condition:
There exists M > 0, such that for any -f, 0 < -t < 1,

1IX (Vf(x + Ax) - Vf(X) - V•f(X)Ax)lI _ MAzT2Vf(X)Ax, (7)

whenever z > 0 and IX-'AxI _< y. (Here, 11.11 is the Euclidean norm.)
This condition is also covered by the self-concordance condition if f is three times contin-
uously differentiable in the interior of the feasible domain. More precisely, the next lemma
states that the corresponding logarithmic barrier function is (I + 2M)-self-concordant.

I3
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Lemma 7 Suppose f (X) E C' fulfils the settled Lipschitz condition with parameter M. Then
the logardithic 64arr~-ic ficnCtionS w and 0, from Lemmna 2 are (I + ~Al)-selJ-concordanL.

Before wc conclude we would like to briefly point out a class of problems considered by
Mchrotra arid~ Still [15] (and also by Zhang 1241) which docs not havc a self-concordant
logarithmic barrier funiction. Metirotra and Suit in~trodlucedl a curvature constraint of tlhe
followintg form: T1here exists a number ic > I such that for all x, y arid hL in Bin

h TV* f,1(x)Ii < hI TV~f()

For constraint functions fj satisfying this condition, thcy present a polynontial time interior-
point algorithmn (that neceds at mnost O(O5./fin In c) Newton iterations to reduce the error by
a factor of c). Clearly, thcrc arc constraints with self-concordant barriers tltat do not satisfy
this condition, and conversely, this condition covers sotne constraint functions that do nlot
have a self-concordattt barrier function. For miost apllhications however, we believe that the
self-concordance condition is more practical.
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Abstract: This paper gives an overview of different modeling techniques in the realm
of integer and mixed integer programming as well as in logical modeling. The modeling
language LPL (Linear Programming Language) is use as vehicle to express such
models. The idea of having a unique representation scheme for mathematical and logical
models is powerful but its advantages are not yet widely recognized.
Initially, LPL was built to formulate the structure of bigger LP models to overcome the

model management difficulties of big real-live LP models. In the meantime, the
language specification has been extended several times to manage more complex
models such as logical models.
IP and MIP techniques are applicable to a surprisingly large number of (logical)
problems too. Methods are given to convert these models to pure MIP models. The
LPL compiler translates pure logical sentences into IP restrictions such that a linear MIP

solver can solve them.
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1 INTRODUCTION

"One of the reasons why [P has not been applied anywhere

near as widely as it might to practical situations is the failure
to recognize when a problem can be cast in this mould."

Williams H.P.

This paper supposes a reader familiar with the basics of the LPL modeling language

which allows a modeler to formulate an LP-model in the usual mathematical notation

using indexing mechanism as described in [Hurlimann 1992]. A brief overview of LPL

can also be found in [Hiirlimann 1992a].

To summarize, the main features of LPL (Linear Programming Language) are:
"• a simple syntax of models with indexed expressions close to the mathematical

notation, and directly applicable for documentation
"• formulation of both small and large LP's with optional separation of the data from

the model structure
"• availability of a powerful index mechanism, making model structuring very flexible
"* an innovative and high-level Input and Report Generator
"* intermediate indexed expression evaluation (much like matrix manipulation)
"* automatic or user-controlled production of row- and column-names
"• tools for debugging the model (e.g. explicit equation listing)
"* built-in text editor to enter the LPL model
"* fast production of the MPS file
"* open interface to most LP/MIP solver packages.

Recently, LPL has been enhanced by several logical operators to exploit the power of

integer programming. This extension of the new version 3.9 of LPL is summarize in

the second part of this abstract.

It is well known that logical statements can be translated into IP-constraints containing

0-1 variables. The paper hold at the conference wil! present the translation rules of

logical statement into IP constraints used by the LPL compiler and expose a number of

applications.
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A surprisingly wide class of practical problems can be modeled using integer

programming. There are applications in OR/MS including operational problems such as

distribution of goods, production scheduling, machine sequencing; planning problems

such as capital budgeting, facility location, portfolio analysis; design problems such as

communication and transportati"on networks design, VLSI circuit design. There are also

many applications in combinatorics, graph theory and logic. An even broader model

class are mathematical models amalgamated with some logical conditions.

But the MIP formulation of a problem is sometimes far from being trivial. Ingenious

techniques and a lot of modeling experience is needed to formulate such problems.

Often, a more natural formulation and representation for many problems in the

mentioned domains is (a subset of) predicate logic. An extension of the LPL modeling

language has been designed recently by introducing various logical operators to use

more natural formulation techniques. This allows the modeler to formulate his problem

in a subset of predicate logic. By default, the LPL compiler translates such

representation into a mixed-integer linear mathematical formulation in order to apply a

general MIP solver.

Several modeling techniques in integer programming are investigated in this paper.
Formulation methods are given for different problems, which can be expressed as MIP

problems.

It is well known [Williams 19771, that Boolean expressions can be translated into

linear, mathematical constraints such that - loosely speaking - the solution space is the

same. Suppose as an example, a mathematical model containing different linear

restrictions is given and the modeler wants - among other constraints - to add the logical

constraint X or Y' where X and Y are two propositional statements. Adding

X or Y means that the model is no longer a pure mathematical model, but a mixed

model of mathematical and logical constraints. To mould the whole model into a pure

mathematical form, the logical statement 'X or Y' must be replaced by the linear

constraint 'x+yŽl', where x and y are 0-1 variables with the meaning that they are 1 if
the corresponding proposition is true and 0 otherwise. It is not difficult to see that the

constraint 'x+yŽl' holds if and only 'X or r is true.

Although there are different methods to translate logical statements into 0-1 constraints,

an mechanical translation procedure is useful, since it will allow to apply a professional

MIP-solver to solve such mixed problems. Furthermore, the translation step - coded by

hand - would be very time consuming and prone to errors. Hence, an automated

translation procedure is especially interesting for mixed models containing symbolic
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and quantitative knowledge. But even pure logical models such as the SAT-problem

(satisfiability problem) can be translated into an IP model. Since these problems are all
at least NP-hard, it is advantageous to approach their solutions using different methods.
Furthermore, an important subset of logical problems that can be formulated as Horn
clauses is not NP-hard. Horn clauses translated into IP programs can be solved using
an LP solver, since it is sufficient to solve the LP relaxation of the IP program. The
integrality constraints are automatically fulfilled. This is an interesting aspect of many
(Horn)-rule based knowledge bases: Instead of using inference and resolution
techniques to solve such problems, one may translate the problem into a LP problem
and solve the transformed problem; large LP problems can be solved quickly.

It is relatively new to integrate a mechanical translation procedure into a modeling
system. McKinnon & Williams [1990] presented a procedure and its implementation in
Prolog, which accepts logical statements and outputs the corresponding linear
constraints. Lucas & Mitra & Moody [19921 also expose the specification of such a
converter procedure which will be integrated into the CAMPS modeling system [Lucas
& Mitra 1988]. The present paper exposes another translation procedure which is
already included into the LPL language.

Although such a general convener is beneficial for many problems, one should not
imply that every logical model should be translated into an IP model to solve it with a
general IP solver. Logical models are habitually solved more efficiently by specialized
and more appropriate solvers. One should here clearly separate the formulation and the
solution process. LPL is a language which allows the modeler to formulate his model,
but the language has no general mechanism to solve the problem. Since it is generally
admitted that a general solver for mathematical and logical models will never show up,

and since many specialized and efficient solvers exist for different subset of problems,
the motivation is to have at least a unique modeling language framework with which all
kind of models might beformudated and which is formalized enough to be processed
automatically by a computer. If there is no hope for a unique universal solver, it might
at least be possible to have a unique language of formulation.

2 LPL EXTENSION FOR LOGICAL MODELING

Mathematical models can be represented by the LPL language in a form close to
algebraic, indexed notation.
Example: the constraint

a, < , +c. for every i e T

would be formulated using the LPL syntax as
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EQUATION R(iT : ali) <- SUM(J) b[ij] + SUMjk,1IS and k>1 and k<n) c(iik-1,1I*x(k,1

The statement contains data tables such as cikl or ai, an indexed variables xk,, several
indices (ij,...), arithmetic and logical operators. Several logical operators have been

incorporated into the older Yersions of the LPL language to evaluate Boolean
expressions. But Boolean expressions were not allowed in expressions containing
variables as operands. A Boolean expression, such as 'S and k> 1 and k<n' in the last

example, can be evaluated immediately, since the operands are all 'known' quantities.

But consider now the followitg expression, where x is an unknown quantity

((x <2) or (x > 5)) and (x > 0)
This Boolean expression contains a variable x and can, therefore, not be evaluated,

since the value of x is unknown. If x is between zero and two or greater than 5, the

expression returns true otherwise it returns false (Figure 1).

true true

a 2 5

Figure I

The second Boolean expression must be approached differently than the first

expression. Nevertheless, a modeling language should accept both expressions,
independently of how they are processed. In LPL, Boolean expression such as
((x < 2) or (x > 5)) and (x > 0) can be written in a straightforward way and can be

integrated into the model as model constraint such as

EQUATION MyConstraint: ((x<-2) or (x>-5)H and (x>-0;

To process such a constraint using a standard solver, it must be translated into a pure

logical or into a pure mathematical statement. Since LPL interacts well with an LP/MIP-

solver, the compiler translates them by default into linear constraints, in order to apply
the LP/MIP-solver. But again, there might be a more efficient solver for the problem at

hand, and in this case the modeling system should translate the formulation into the
appropriate form.

Table I summarizes all logical operators which are defined in LPL and which can be

used in the formulation of a constraint. Of course, all operator can also be used in
Boolean expression which are evaluated immediately as in

VAR X(ij: ATLEAST(3) (i) a(i[J.);
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The declaration is perfectly correct. It means that a variable X is declared for every (ij)-
tuple, such that at least three of a row i in the (known) data matrix aij are different from

zero.
Note also, that the operators AND, OR, XOR, NOR, and NAND can be used as binary

operators as well as index-operator. As an example, AND(i) ati] simply means at])
and a[21 and ... and a[n]; furthermore, x AND y can also be written as AND(xy). For

a detailed syntax see the Reference Manual [HUrlimann 1992b]. It should also be noted
that the AND(} has the same meaning as the old FORALL(] and the OR() is the same
as EXIST[).

EXACTLY, ATLEAST, and ATMOST are index-operators with a slightly different

syntax. The reserved word is followed by an expression surrounded by parentheses.

The expression
ATHOST (4) (i) alil;

means that 'at most 4 out of all afi] should be true (=non-zero)'. Several applications

that use these operators will be shown in this paper.

Operator Alternative formulation Interpretation

(x and y are any sub-expression containing variables)

unary operators
NOT x x is false

binary operators
"x AND y ATLEAST(2) (x,y) both (x and y) are true

AND(x, y)
"x OR y ATLEAST(l) (x,y) at least one of x or y is true

OR~x,y)
"x XOR y EXACTLYM( (xy) exactly one is true (either ... or)

XOR(x. y)
(x OR y) AND (NOT x OR NOT Y)

"x IMPL y NOT x OR y x implies y (implication)
"x IFF y (x INPL y) AND (y IMPL y) x if and only if y (equivalence)

NOT (x XOR y)
"x NOR y NOT (x OR y) none of x and y is true

NOT x AND NOT y
ATMOST(O) (xy) (at most none is true)

"x NAND y NOT Ix AND y) at most one is true
NOT x OR NOT y

ATNOST(l) (x.y) (at least one is false)

Indexed operators
FORALLIM) xil] AND(i) Alil all xili are true
ANDli) xii) ATLEAST(I)(i• A(l) all x(li are true
EXISTMI) x(il OR(L) xili at least one out of all x(i] Is true
OR(j) x|i) ATLEAST(1)(i) xli) at least one out of all x(ii is true
XORgii xli) EXACTLY(1)(i) xli) exactly one out of all xili is true
NORMi) xil) ATHOST(O)(i) xiil none of all xii) is true
NAND(i) xlii ATMOST(@i-l)(i) xlii at least one of xii) is false

ATLEAST(k)(i) xii) at jeast k out of all xii) are true

AT4OST(k)(i) xili at most k out of all x1i) are true
ZXACTLY~kpii) xtii exactly k out of all xili are true

Table 1: logical operators in LPL
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LPL allows also to introduce predicate variables. They are simply declared as variables

of type LOGICAL such as
VAR NyPredicate}i) LOGICAL;

To link the predicate with the rest of the otherwise mathematical model, an expression
can be attached separated by a assign operator. Suppose that a predicate P is introduced

into the model with the meaning that it is true, if another (real) variable x is strictly

between the lower (I) and upper (u) bounds. The following declaration introduces the

predicate and the real variable and links the predicate to the variable.

VAR x [l,u); "quantity x of product I produced with lower and upper bound"
VAR P LOGICAL : x; "product i is manutactured (true or false!)"

Using this declaration, one can express the logical condition P " (x >1) and (x < u),
which means that P is true if and only if x is between the lower and upper bound. If the
lower bound for x is not declared, the declaration of P expresses the condition
x > 0 -4 P (which is the same as P -4 x = 0); if the upper bound ofx is not declared,
it expresses the condition P -- x > 0; and if no bound for x was declared, an error is
generated by the LPL compiler.
It is also possible to link a predicate to any mathematical expression, such as

VAR x [lxuxj; yflyuyj;
VAR 0 LOGICAL : (x>a) or (y<b);

The declaration of Q imposes the logical condition Q -4 ((x > a) or (y < b)). On the
other hand, if the modeler wants to impose the condition ((x > a) or (y < b)) -+ Q, the
expression must be preceded by the symbol '<' as in

VAR 0 LOGICAL :< (x>a) or (y<b);

More explicit examples will be shown in the paper.
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Interior Cutting Plane Methods

The huge amount of research on interior point methods which has
been performed in the last few years also contains a number of
cutting plane methods for convex programming, nondifferentiable
optimization, integer programming and semi-infinite programming
based on interior point ideas. The basic idea of these "interior cut-
ting plane methods" is easy: work with a linear approximation of
the feasible set, which is iteratively updated. In each iteration a
certain interior point of the linear approximation is computed; if
this point is feasible for the original constraints then the algorithm
stops (feasibility problems) or an "objective cut" is added (opti-
mization problems); if, on the other hand, this point is infeasible
then a cutting plane is added. The methods differ e.g. in the way
the specific interior points are computed for which feasibility is
checked; these points will be called centers.

Methods that fit in the above scheme include
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author(s) ref. center
Elzinga, Moore [2] ball centers
Goffin, Vial et al. e.g. [3] analytic centers
Vaidya [8]_. volumetric centers
Den Hertog et al. [4,5] minimizers log. barrier
Atkinson, Vaidya [1] analytic centers

A great advantage of cutting plane methods as described above
is that in each iteration only linear constraints matter. More-
over, successive approximations differ only slightly, which makes
"warm starts" possible. Without an efficient strategy for dropping
constraints the number of constraints in the linear approximation
would however grow too much.

From the practical point of view Goffin, Vial et al. have obtained
very good results with their implementations, since the algorithm
appears to be very stable. Theoretically the best algorithm of this
form is Vaidya's [8], which uses socalled volumetric centers. The
method needs a number of iterations which is bounded by O(m.L)
where m is the dimension of the space and L somehow measures
the input length of the convex program. This complexity bound
can be achieved by applying a very good and natural strategy
for dropping constraints; the number of constraints is bounded by
O(m).

Vaidya's Volumetric Center Algorithm

Preliminaries

Consider the problem of finding y E C C JRm , where C is a convex
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set. A major assumption made is that the set C is contained in a
ball of radius 2 L centered at the origin and that if C is nonempty
then it contains a ball of radius 2 -L. The set C is successively
approximated by bounded full-dimensional polyhedra of the form
P = { y I ATy + s = c, s > 0 }, that C C P. Conforming to
'standard interior point notation' we denote the dimension of the
space by m, whereas the number of constraints in P is denoted by
n (as opposed to (8]). We denote the i - th column of A by at.

Many interior point methods make use of the analytic center of a
polytope, introduced by Sonnevend [7], which is the maximizer of

max{ f(y) = ln(si) I ATy + s = c
Y

y i=l

The hessian of 0(y) is given by H(y) = AS- 2AT, where S denotes
the diagonal matrix with the components of the vector s on its
diagonal, and e is an all-one vector of appropriate dimension. The
volumetric center as introduced by Vaidya is now defined as the
minimizer w of the potential function

1
F(y) = 1lndet(H(y)).

2

To measure the distance of a point to a certain constraint the
following distance measure is introduced (this measure also plays
a role in methods based on analytic centers, e.g. [4]):

ory) = a H(y Y'ai
c-- aTy
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It can easily be shown that ai(y) _< 1 for y E P. The smaller
ai(y) the further is the constraint from y. Moreover, it holds that
E!11 a,(Y)2 = m, since the ai's are the diagonal elements of a

projection matrix. This result is a key ingredient to establish the
complexity bound.

Algorithm

Let the current polytope be pk, with volumetric center wk. More-
over, we have a point yk approximating wk. Let E be a 'small

constant'.

The algorithm performs iterations of the form:

Compute r := mini ui(yk)1. Depending on the value of -r, one of
two cases apply. If r > [ then a cutting plane is added, which
is computed by calling an appropriate oracle. The constraint is
put in a 'nice position'. On the other hand, if r < c, the con-

straint which is furthest away from the current center is dropped.
In both cases, a Newton-type procedure is performed to find an
approximation to the new center. If the resulting point is in C

then stop.

Analysis

In both cases of the algorithm 0(1) Newton-type steps suffice. The
distance measure used to measure closeness to the exact center is in

fact the length of the search direction. As in the analysis of barrier
methods for convex programming (e.g. Nesterov and Nemirovskii
[6]), it is this measure that plays an important role in proving
polynomiality.
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The function F(y) is used as a potential function to measure the
volume of the polytope. Denote by y" the analytic center of P.
Then since

PC { y I(y_ ?) T H(Y*)(Y - y*) - n'}

it holds that

volume(P) _< (2n)m(det(H(y*)))-1/ 2 < (2n)m(det(H(w)))-1j 2

= (2n)m exp(-F(w)).

Vaidya has proved that after k iterations

Fk(Wk) - FO(Wo) > ke

2

This is enough to show that if the algorithm does not stop with a
feasible point, then after O(mL) iterations the volume of P must
fall below 2 -mL, hence C is empty.

The main part of the paper [8] is a very technical analysis of the
effect of adding and dropping constraints on the potential function,
the position of the center and the distance measure. Also, the
analysis of the Newton steps requires careful analysis. In this talk
we will discuss Vaidya's method, which has very good theoretical
results but seems to get little attention in the field of interior
point methods. We will try to give some insight in these topics,
and stress the relationship with e.g. Nesterov and Nemirovskii's
[6] analysis.
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FOR LOGARITHMIC BARRIER FUNCTIONS
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Abstract

We present a new strategy for performing a line-search on a logarithmic
barrier function. The strategy exploits the analyticity of the barrier function
and yields a simple and efficient method for finding the minimum of the barrier
function along a given line. For our theoretical investigations we define the
notion of self-concordance of order two for the restriction f of a logarithmic
barrier function to the real line. Based on this notion we define a new search
step for the line search and prove a bound on the size of the new search step
which is slightly better than the optimal bound known for the case of a self-
concordant function (of order one). We conclude with some numerical examples
that illustrate the potentials of the new line search.

1. INTRODUCTION

Interior-point methods have found wide interest in many applications in the recent
past. The development of an efficient subroutine for a line search is a very important
detail of the implementation of interior-point methods for solving linear or nonlinear
convex programs that found little attention so far. Even though the line-search is
"only" a one-dimensional problem, it is far from trivial, and our analysis below shows
the rich structure that can be exploited. We devise a cheap, cubically convergent
procedure that is faster than a suitably damped version of Newton's method. The
underlying work is motivated by two articles by Murray and Wright [3, 41 that
investigate the same problem but are completely different in their approach.

The analysis of this article is applicable to a class of problems with non-linear
constraints that includes as special cases

linear and quadratic programming problems
and

minimization problems over the cone of positive semidefinite matices.
For simplicity we present our analysis for the case of a linear program, and out-
line briefly the modifications that are necessary for extensions to other classes of
problems. Let

o(zs) = "-Z -. log(b - aTz) (1.1)

"*Institut fir Angewandte Mathematik, Uni•ersity of Wirsburg, 8700 Wirsburg, (West)
Germany.
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be a barrier function for a linear program. (The same analysis also holds for the
barrier function (x, /A) := cTx/, - E log xi with the additional constraint Ax = b.)
Let x be some strictly feasible point for Vp and h be some search direction for finding
the minimum of W. Without loss of generality we assume for the rest of this article
that h is a descent direction for ip._Define the function

f(t) = Wp(x + th). (1.2)

The function f hence depends on the barrier function V as well as on z and h. By
the assumption on h: f'(0) < 0.

2. KNOWN RESULTS

As shown in [51 (for a more specialized but shorter analysis see also [1]), for any x
and h as above, the function f is convex and satisfies the following self-concordance
relation

f"'(0) .5 2fl"(0)3/2. (2.1)

This relation is true for functions f generated by a large class of logarithmic barrier
functions including the two special cases mentioned above. (A slightly more gener-
alized case is to replace the constant 2 in (2.1) by some other positive constant.) In
the following we will always assume that f satisfies (2.1).

It is our goal to perform a line-search, i.e. to find the minimum of f for some
t > 0. The following statements are proved in 15] for functions f satisfying (2.1):

e If the Newton step

t f'(0) (2.2)
f"(0)

has H-norm less than one, i.e. if

IIAtllH= IAtlv7' < 1 (2.3)

holds, then f has a minimum. (Moreover, also the barrier function Vp generat-
ing f via (1.2) has a global minimum.) Here, the notation H-norm is derived
from the higher dimensional case where an analogous result holds true and H
stands for the Hessian of f (respectively of V) and IIjvIH = rTD2,(X,)V.
We maintain this notation even though At is only a scalar.

* Second, if Iltll u < 1, i.e. if Itl < 1/N/•10 (2.4)

then t is strictly feasible for f.

These results already supply the foundation for a simple step length rule for a
line search and are also true for the higher dimensional case. A possible rule for
the search step a referred to as reduced Newton step and for that [5J proved global
convergence is the following:

At
1+ IIAtII" (2.5)

:" HO
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Lemma 1
A line search using the reduced Newton step is monotonously convergent, i.e. the
reduced Newton step a is "a little too short".
Proof:
We only prove monotonicity of the line-search. Let a = f'(0) < 0, b = f"(0) > 0,
and i be the zero of g(t) := f'(t). We show that a < it holds true by applying the
differential inequality (2.1) (self-concordance of f) to the function g = I, i.e.

g(O) = a, g'(O) = b, g"(t) !5 2g'(V) 3 / 2 . (2.6)

The extremal solution v that satisfies v" = 2v 31/ 2 is an upper bound for g. (Since g'
satisfies a first order initial value inequality it follows g' < v', and hence also g :_ v.)
The function v is given by v(t) = (b- 1/ 2 _ t)-1 - a - b1/5 and has the (unique) zero

s = ab-'/(1 + ab-'/ 2). By construction of v, we may conclude that s < f. I
In the following we will further exploit the properties of the logarithmic barrier

function and obtain additional results that are unpractical in higher dimensions but
appear to be useful for a line-search.

First we illustrate with a: simple example the difficulties that arise when trying
to devise a heuristic for a line-search.

3. A SIMPLE EXAMPLE

Consider the case that the interval [0, 1] is given by m (identical) constraints of the
form t < 1 (m > 1) and the constraint t > 0. Even though this appears to be a
very artificial example the situation arising here is typical for the problems that are
encountered during a line-search. The resulting barrier function is

O(t) = -mlog(l - t) - logt. (3.1)

Clearly, the minimum of this function is at i = 1/rn. If we choose an initial point
for Newton's method for finding t that is fairly dose to t, e.g. to = 1/v,/', we find
that the Newton step starting at to has length ; 1/2. This means, the Newton step
is by a factor VG/ too long, and the resulting point is outside of the feasible set. If
we choose a starting point that is further away from i, e.g. to = 1/2, we find to our

surprise that the Newton step is exact. And if we move further way from f it turns
out that the Newton step becomes way too short. Summarizing we see that moving
from to = 1 to to = 0, the Newton step is first too short, then too long (much too
long, by a factor of O(.,/'m)) and then again too short. Aso, the information that
the H-norm of the Newton step is large does not give any information whether the
Newton step is too long or too short. Thus it is hard to identify the domain in
which the Newton step contains some useful information, and the domain in which
bisection (and backtracking) would be the best choice to minimize f. Note further,
that a seemingly "good" Newton step starting at to = 0.45 that is only by a factor
1.1 too long still yields an infeasible point and is therefore useless. In the next
section we describe a property that may help us to further analyze f and to develop
new results that improve the rate of convergence.



299

4. SELF-CONCORDANCE OF ORDER TWO

Similarly to the definition of self-concordance, we may observe a second property of
the logarithmic barrier function, namely that

f <"(t) <_ 6f"(t)2 . (4.1)

This property will be referred to as self-concordance of order 2. The proof that this
estimate is valid for the logarithmic barrier function of linear constraint functions is
straightforward: Clearly, if f(t) satisfies property (4.1) then so does f(rt + s) with
r, s constants, r 5 0, i.e. the property is invariant under affine transformations.
Also, if f, and f2 satisfy (4.1) then so does f, + f2, (and for r > 0, rf satisfies
a similar property with 6 replaced by 6/r). Since the relation is trivially true for
f(t) = logt this completes the proof. Similarly we obtain for the restriction to the
real line of the logarithmic barrier function of a semidefiniteness constraint

f(t) = - logdet(X + tY) = - logdetX - logdet(I + X- 1 Y) (4.2)

with a positive definite matrix X and a symmetric matrix Y that

f(k)(t) = (-1)k(k - 1)! trace(((X + tY)-1Y)k) (4.3)

and that
6f"(O()2 = 6 trace(B)2 > 6 trace(B 2 ) = f""(O) (4.4)

where B = (X- 1/ 2YX- 1/ 2 )2 is positive semidefinite. (Note that by trace(AB) =

trace(BA) we may commute a factor (X + tY)-1/ 2 to the right for our convenience.)

5. ADDITIONAL RESULTS

This section is motivated by the fact that higher order derivatives are easily com-
putable for functions f generated by the logarithmic barrier function of linear con-
straints and of the determinant. If f is generated by the function o in (1.1) as in
(1.2), i.e.

In

f(t) = cT(x + th) - Elog(b, - aT(z + th)),

the derivatives of f are given by

f(t) = cTh + (5.1)
(b - aT(z + th)

and
(t (aTh)k.Ik()=(k - 1)! =1 (bi - aT I (z + th))k 52

for k > 2. The "expensive" part (0(mn)) is to compute all the scalar products aTz
and aTh, but once these are known, it is comparatively cheap (O(m)) to compute
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higher order derivatives' . We point out that exactly the same situation holds for
the logarithmic barrier function f of (4.2) with

f~k)(t) = (- 1)k(k - 1)! E Aý

where the A\ are all the eigefivalues of the matrix (X + tY)-'Y.
The cheap computation of f" allows two modifications of the line search. Rather

than taking the Newton step At (2.2) for the line-search, (with some suitable damp-
ing factor as above) we suggest to use the zero of the second order approximation
to f. More precisely, let

a=f'(O)< 0, b= f(0) > 0, and c=f f.'(0). (5.3)

Define the discriminant D = max(0, b2 - 2ac) and let

dt = -2a/(b + v/-D-) (5.4)

be the cubic search step. (It is trivial to derive that for b2 - 2ac > 0 this value of dt
is one of the zeros of the second order approximation to f, i.e. it is a critical point
of the cubic approximation to f.)

Clearly, the cubic search step will be locally cubically convergent, but here, our
interest is rather on how to extend the domain of rapid convergence compared to
damped Newton's method. This goal is addressed in our second suggestion below
for modification of the line search.

Before we continue, we briefly recall some known results (taken from [6]) about
the WeierstraIg p-function that will be used below. The WeierstrafS p-function is
determined by two paramters g2 and g3. We are only interested in the case that p is
defined by the invariants g2 = 0 and g3 = I (this is referred to as the equianharmonic
case in the literature) and in real arguments for p. For this case, the description of
p involves the following constants:

=e 2 = 4=, q2 - 23 0.59276269754. (5.5)

The function p is periodic with period 2w2 , and has poles at t = 2nw2 , n E Z.
Further, for t E (0, 2w2): p(t) Ž e2. Numerically, p can easily be evaluated by its
power series expansion. We list two possible expansions for p:

p(t) = I + +4 + 1  o+ 1 t 16 + O(t 22 ) (5.6)
2t 28t 10192 5422144

for t E (0, 1) e.g., and

P(t+ W2 ) =e 2 +3e 2 x[l + + X2 +6 x3 +5 x4 +4 Z ( 57
+- -7 7 7Z+O6) (57

where z = e2t2 . (Both p(t) and P(W2 +t) are even functions.) The above expansions
also yield the expansions for p' and. for the Weierstrafi (-function, with C' = -p.

'For linear constraints, it is also cheap to evaluate the function f and its derivatives for other
values of t, once f is valaluated for t = 0.
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(The constant term ofC in (5.6) is zero, in (5.7) it is 92.) It is known, that p satisfies
the following differential equation

p 2 = 4p 3 - 1, p"=6p2 .

Finally, also the inverse functionsCto p and to C are known by their power series
expansions. Let ! : [e2, oo) -. (0, w2] be the inverse function of p, then

u 3u 2  5u 3  7u4 63us 231u 6  429u 7

7 26 3-8 +4-0 +2 48 +59-2 +6 8-8+ (

where u = z- 3/8 and z > 0.9. For z E [e2, 0.9) the following expansion may be
used:

(e 2 +Z) = W2  -I 3z z2  z3  2z4
•(e2+ z = e2 - e2 + e• 21e 2 z)

The inverse function : JR -+ (0, 2w2) to ( has the power series

7 17•• 4963'3
R(z) = z-1[1 - + 1743 359 + 0(74)] (5.8)

7 143 3553

for z > 0.75 and 7 = 1/20z 6, and

=W2-z - , Y+12y2  267y 3  139y 4  30192ys 1634208y6 + O(1 )]

e2 5 35 5 275 3575

where y = (z - n2) 2 /e2 and Iz - r1l is small. Finally, it holds that ((z + 2w2 ) =

((z) + 2n2 (p is periodic but C is not!) and that C is an odd function. From this
we obtain the relation R(z) = 2w2 - R(2q2 - z) which allows us to evaluate R for
z < 0.45 e.g. via (5.8).

We now return to the problem of increasing the step length for the line search.
Let v(t) := f"(t). Self-concordance of order two implies that v"(t) < 6v(t)2. We are
given v(0) = b and v'(0) = c and intend to determine the domain of the function v
for positive t as well as a lower bound of the location of the minimum of v. As in
the proof of Lemma 1, the structure of this differential inequality implies that the
solution of the initial value problem

W"(t) = 6uw(t) 2 , W(0) = b > 0, W'(0) = c (5.9)

is an upper bound for v. The general solution of (5.9) is the p-function with in-
variants g2 = 0 and g3 E JR. In our case, the solution can be reduced to the
equianharmonic case g2 = 0, g3 = 12 by the transformation

W(t) = a2 p(at + z)

with
a and X (b/a 2) c < 0

2w2 - D(b/a 2 ) c>0

2The case that jg = g3 = 0 yields pV() = 1/(1 -j).
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It is easily verified that w indeed satisfies (5.9). Since v _< w, the pole of v must lie
behind the one of w which gives us the following Lemma:

Lemma 2
If a and x are given as above, t > 0 and

I1tIIH = tA < (2W2 - x)

then t is strictly feasible3.
More important yet, we may also derive a lower bound on the minimum i of

f: Let V be an antiderivative to v e.g. V(t) = -a((a(t + z)). The value .J with
V(9) - V(O) = fo v(t) dt = -a is a lower bound for i that is better than the bound
derived in Lemma I and can easily be computed using the function R given above.
We obtain Weotn= a(( + ((z)) - z), (5.10)

and will refer to § as the reduced cubic search step. The construction of j implies
the following lemma.

Lemma 3
The reduced cubic search step i, the reduced Newton step s, and the minimum t of
f satisfy the relation

0<s< "<.

Moreover, the reduced cubic search step is the maximum possible step that is less
than i for given values of f, f', f" and f"' at t = 0.

Unfortunately, also the reduced cubic search step j (as well as the cubic search
step dt) does not grant a satisfactory rate of convergence for all starting points to
(e.g. not for to > 0.5 in the example of Section 3). We therefore suggest a simple
modified cubic search method for the first step of the line search. Set the initial
search step s = g to the reduced cubic search step. Then repeatedly quadruple 5
as long as . is feasible for f and the absolute value of f(s) decreases. In the next
section we compare the different methods.

6. SOME NUMERICAL EXAMPLES

In Table 1 we compare the reduced Newton method, the reduced cubic method, and
a combined cubic method that uses the modified cubic search step (outlined at the
end of the previous section) in the first iteration (to come close to the minimum),
and then switches to the reduced cubic method. Each row lists the starting point
to and the average number of function evaluations needed by each method for 20
random examples with 5000 constraints for the interval [0, 1]. (We assume that
the derivatives are cheap once f is evaluated.) In these examples 100 constraints lie
in the interval f-10, 01 and 4900 in the interval [1, 2]. The minima of the barrier
functions lie around t ;t 0.0003. As final accuracy we require IIAtIIH :5 0.01. (This
correponds to about 10 digits relative accuracy for these examples.)

3 For linear or semidednite constraints this bound is merely for illustration since the exact domain
is known.
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to red. Newton red. cubic comb. cubic
10-8 29.2 5.1 12.2
0.1 9 8 6.6

0.999 127.7. 104.7 39.2

Table 1
Since we are interested in the global convergence behaviour we chose starting

points that all have a poor accuracy (relative to the feasible domain [0, 1]). Clearly,
the last row has a very bad starting point. Below, in Table 2 we list an example with
5000 constraints and a linear objective -t There are 2500 constraints in [-10, 01 and
2500 in [1, 11]. The value f is the approximate minimum, and is almost constant
for the 20 random examples in each row.

A to i red. Newton red. cubic comb. cubic
10-5 0.1 10-5 12.9 11.5 8.7

10-5 10-8 10-5 21 3.6 8.2
10-10 0.1 10-10 13.4 11.9 9.4
10-10 1o-14 -10 27 3 8

Table 2
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A Projected Conjugate Gradient Method
for Sparse Minimax Problems.
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A new method for nonlinear minimax problems is presented. The method is of the trust
region type and based on sequential linear programming. It is afirst order method that only
uses first derivatives and does not approximate Hessians. The new method is well suited
for large sparse problems as it only requires that software for sparse linear programming
and a sparse symmetric positive definite equation solver are available. On each iteration a
special linear/quadratic model of the function is minimized, but contrary to the usual
practice in trust region methods the quadratic model is only defined on a one dimensional
path from the current iterate to the boundary of the trust region. Conjugate gradients are
used to define this path. One iteration solves an LP subproblem and requires three function
evaluations and one gradient evaluation. Promising numerical results obtained with the
method are presented. In fact we find that the number of iterations required is comparable
to that of state-of-the-art quasi-Newton codes.

1. Introduction

This short paper is based on the report [4], and we shall frequently refer to

this for details. Our main purpose is to present a new method for solving

sparse minimax problems of the type

min F(x) where F(x) = max c1(x).

The functions ci:Rn --+ R are smooth.

Minimax problems occur frequently in engineering and science, and they
are often both large and sparse. Such problems arise in microwave circuit
design, satellite antenna design, digital filtering and optimal truss design, to

name a few applications. Another important use of a minimax method is to
solve constrained nonlinear programming problems, and we return to this
in section 3.

We are not aware of any methods specifically designed for large and



305

sparse minimax problems, but several methods for dense problems exist in

the litterature. A list of many of these may be found in [4]. Some of the

methods are first order methods, that are based on linearizing the functions

ci and the rest are second order methods, in the sense that they are based on

the Hessian of a Lagrange function. Many of the methods approximate this

Hessian using quasi-Newton updates but this has the serious disadvantage

that the commonly used updates quickly produce a full matrix, even for

sparse problems. The approach is therefore prohibitively expensive for

large sparse problems. An alternative is to use the exact Hessian or a finite

difference approximation to it, and some of the methods do that. This may

however also be too expensive for large problems. An additional disad-
vantage of the second order methods is that most of them rely on solving

quadratic programming (QP) subproblems, and methods for sparse QP are
not readily available.

These drawbacks are avoided by the first order methods. The use of a

Hessian is avoided completely and no QP problems are solved. It is well

known that for certain problems, methods based on linearization will be

quadratically convergent. These problems have a strongly unique solution,
which means that all directions from the solution are strictly uphill.

Strongly unique solutions are necessarily such that the maximum in (1.1) is

attained for at least n+l of the functions ci. The shortcoming of these basic

first order methods is, that if the solution sought is not strongly unique,

then the convergence may be quite slow.

At any point x the functions ci that attain the maximum in (1.1) are called

active, and the active set, W(x), is the corresponding set of indices i. In

the neighbourhood of a non-degenerate solution x* the condition Z(x) =

I(x*) determines an (n+l-t*)-dimensional differential manifold M, and
this will be called the active manifold. An important fact is that the re-

striction of F to the active manifold is a smooth function.

The application of a basic first order descent method quickly gives a point

on or near the active manifold, but convergence inside the manifold is slow,

unless the problem is specially simple. There are two reasons for this slow



306

convergence. Firstly such a method has problems with keeping within the

manifold, because a search direction found using linearization will be tan-

gent to the manifold. The second reason is only relevant if the manifold is

at least 2-dimensional. We then find that even if the manifold is linear the

search direction need not be in the direction of the minimum on the mani-

fold and a steepest-descent-like zigzagging may occur. These reasons are

discussed further in [4].

In [3] a first order method that avoids the first cause of slow convergence

is given. That method is of the trust region type and solves the same LP

subproblems as the method given in [5] for a basic step. If the basic step

goes uphill and away from the active manifold, a special corrective step

back toward the manifold is tried. The method uses one gradient evaluation

per iteration, and on the test problems that we tried it used an average of

1.35 function evaluations per iteration.

In the present method we attempt to avoid both causes of slow conver-

gence. The method is still purely first order and again uses only one gradi-

ent evaluation per iteration, but now three function evaluations are needed.
It will however often be the case that gradient evaluations are significantly

more expensive than function evaluations, so this should not be too much of

a detriment. We have used conjugate gradients to avoid the steepest descent

like zigzagging inside the manifold. In addition we use a simple linesearch
along an active arc to obtain the next iterate.

2. The method

In this section we give a rather informal description of the algorithm. A
precise description is given in [4]. In what follows, x is the current iterate

and p is the current value of a trust region radius. The gradient of ci at x is

a row vector denoted by ci'(x). The method uses sequential LP and each

iteration begins with solving the following linear minimax subproblem

min max (c(x) + ci'(x) dLp)
dLP l5i:5M (2.1)

s.t. I1dLp1l1, <5 p,
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which is equivalent to an LP problem. We need a current estimate of the

active set A(x*) and we take this to be the active set of (2.1) at the solution

and denote it by %. On most iterations this is the only information that is

used from (2.1), but occasionally it is advantageous to take the step dLp.

The current estimate of the active manifold will then be

M = (y I ci(y) = cj(y), Vi,jEA}

(or, perhaps more precisely, some connected subset of this).
In trust region methods based on sequential QP, it is common that an

iteration involves minimizing a quadratic model of the objective function
inside the trust region. What we do is somewhat similar. On each iteration

we minimize a model function, but our model function is onlv defined on a

one-dimensional path from x. The path consists of two parts:

(1) A line segment from x to a point xp on or near M.
(2) An active arc y that approximately follows M from xp to

the boundary of the trust region.

We first determine a projective step p1, that goes approximately the

shortest distance from x to M. From the requirement x + Pi E M we get
ci(x+p1 ) = constant, i E A. First order Taylor expansion gives

ci(x) + ci'(x)p, = constant, i E a (2.2)

and p, is defined as the minimum norm solution to (2.2). The method is
designed so that on most iterations x is close to M and Pi is (therefore)
short. From xp := x + P, we find a direction s which is approximately

tangent to the manifold M. On the first iteration, and on iterations when a
restart is made, s is the steepest projected descent direction. On successive

iterations s is found using conjugate projected gradients. The linear space
T = (y I ci'(x)y = cj'(x)y Vi,je S) is approximately the tangent space to
M at x. Let P be a matrix that projects onto T. For i E A the projected

gradient of ci at x is Pci'(x). This turns out to be independent of i and we
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define the projected gradient to be g = Pci'(x), where i E R is arbitrary.

The direction s is -g when a restart is made. Otherwise,

s = -g + [PSlast where P - (g-Pglast) Tg (2.3)last (Pglast) T(Pglast)

and Slast and glast are the values of s and g on the previous iteration. Here

we have adapted the Polak-Ribi6re formula. We restart with s = -g if one

of the following occurs:

(1) the active set 2 has changed from the last iteration,
(2) the conjugate gradient direction turns out to be uphill, (2.4)
(3) no progress was made on the last iteration.

We define d to be a vector in the direction of s with length equal to some

estimate of the optimal steplength. One may for instance use the length of

the step taken on the previous iteration. From x, + d we find a new pro-

jective step P2, toward M, in exactly the same way as p, was found. Details

of the linear algebra needed to obtain p,, s and P2 are given in [3] and [4].
The active arc y is now defined by y(t) = td+t2p 2. We approximate F along

P , with a linear function L and along y with a parabola Q so that
F(x+tp,) = L(t), F(xp+ y(t)) Q(t) and L(l) = Q(O). Finally the next

iterate is found by minimizing the approximation given by L and Q. If the

minimum is not at x it is on the arc y. We therefore let tmin be the mini-

mizer of Q and choose Xp + Ttmin) as the new iterate, if the objective func-

tion is reduced sufficiently. If it is not possible to find a new iterate by

searching along the path defined by p, and y, the last attempt on this iter-

ation is to try the point x+dLP. If this also fails to give a sufficient reduc-

tion in F then x is unchanged on the next iteration.
The final task of the iteration is to update the trust region radius p. In

common with other trust region methods this is based on the quotient

actual reduction in F F(x) - F(xnew) (2.5)
predicted reduction in F L(O) - Q(tain)

If r is close to 1 there is good agreement between the model and F, and we
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increase p. If r is small the agreement is bad, and we decrease p.

The modus operandi of an iteration is illustrated in fig. 2.1 for the case

n=3, t=2. We now summarize the foregoing description in an algorithm.

Several details are left out, and may be found in [4].

while not stop do

solve the linear subproblem (2.1) for dLp and find I and M
find the projection p 1 using (2.2).
find d using (2.3), (2.4) and the surrounding discussion
find the projection P2 using (2.2) with x replaced by x + PI + d
minimize the approximation Q along y and thereby determine tmin
5 +- Pl + Y(tmnin)

if F(x•iS) < F(x) then x (- x+8
else if F(x+dLp) < F(x) then x (-- x+dLP

update p based on r from (2.5)
end while

Fig.2.The active manifold Mo

SThe active arc y

I~ °,

T -- tangent space to M in xP•

Fig. 2.1 The steps of an iteration
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3. Numerical results

The new method has been applied to some standard test problems and the

results are described here. For comparison some other methods have also

been tried. So far we have -not applied the method to very large problems.

The reason is that we don't have a sparse code yet, and furthermore our

philosophy is, that if the method should be able to solve large problems, it

is necessary that standard small test problems are solved efficiently.

As we said in the introduction constrained optimization problems may be

solved by a minimax algorithm. For a > 0 small enough, the problem

min f(x) s.t. ci(x) < 0 i~1,....m-1 (3.1)X

is equivalent to minimizing the exact penalty function F(x)

maxiri.m(aYf(x) + ci(x)), where cm(x) - 0. We believe that this is an

important and often overlooked way of solving constrained optimization

problems.

FIRST ORDER METHODS SECOND ORDER METHODS

TEST PARA- NEW JONASSON MADSEN HALO & •WATCH- LANCE-

PROBLEM n m t* METERS METHOD & MADSEN '175 MADSEN DOG LOT

HS100 7 5 3 a=0.5 12 31 102 25 17 54

a=0.01 17 44 700 31
0=0.001 30 57 7538 45

HS113 10 9 8 0=0.1 15 38 32 19 12 85
o=0.001 20 36 2166 51
0=0.0001 27 55 >9999 71

BARD 3 15 3 y=y' 7 11 5 5 8 34

3 15 4 y=y" 7 23 5 5 8 47

KOW-OSB 4 11 4 7 9 9 14 13

BROWN-DEN 4 20 3 12 42 37 13 11 717

ROSENB 2 2 4 w=1O 8 13 28 15 5
2 2 4 w=100 23 17 344 15 8

PARABOLA 2 2 2 6 21 17 8 11 26

COSH-FUN 9 3 3 n=9 8 31 36 16 12 50
24 8 8 n=24 57 73 247 67 48 81
42 14 14 n=42 >999 37 >9999 233 221 166
60 20 20 n-60 >999 >999 7386 813 530 873

Function evat. pr. iteration 3.04 1.35 1 1 1.14 1
Gradient evat. pr. iteration 1 1 1 1 1.14 0.83

Table 3. lThe number of iterations to reach an accuracy of 10-8 in F
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The test problems that we have used are described in [4]. The first two

test problems are of the type (3.1) and the rest are of the type (1.1). The

methods that we have used for comparison are listed below. More detailed

references may be found in [4].-

J6NASSON & MADSEN The method described in [3].
MADSEN '75 The method of Madsen [5].
HALD & MADSEN The two phase method of [2].
WATCHDOG An SQP method of M.J.D. Powell (the routine MINCF of [6]).
LANCELOT The optimization package described in [1].

The results of the test runs are summarized in Table 3.1. Each entry in

the table gives the number of iterations to reach an accuracy of 104 in the

objective function (see [4] for details of the stopping criterion).

The test results show clearly that the new method is quite competitive

with the more complicated second order methods, at least on this (small)

sample of test problems. The second order methods all maintain a quasi-

Newton approximation to the Hessian, and thus both storage requirements

and work per iteration will be higher. We also see that the new method

gives considerable improvement over the other first order methods.
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The purpose of this paper is to summarize the main model management as-
pects of stochastic linear programming and to outline some basic features
of SLP-IOR, a model management system being under development at the
Insitute for Operations Research of the University of Zurich. For model man-
agement systems in OR see Dolk [2], and for SLP-IOR see Kall and Mayer
[41, [5], 16]. The discussion will be focused on single- and two-stage models
these being the model-classes incorporated into the first version of SLP-IOR.

The models considered are as follows, for details see Kall [3].

Two-stage models

min {cTx + E4Q(x, )}

s.t. Ax ox b (1)

x E [1, u],

with ý E c IRk (-, .F, P) is a given probability space; oc means that any
one of the relations > I< or = is permitted, componentwise; and

Q(X,,) = min qT(ý)y

s.t. W(ý)y = h(ý)- T(ý)x (2)

y >_0
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where
q(ý) 1q0  +Y ql~i

h(ý) ho + E 1 IhJ (3)

T(ý) To + 0 = Tj~j

w(o) WO + Ejý=, wj%

Problem (2) is called the second-stage ( or recourse ) problem; it can be inter-
preted as accounting for violations in the random equat~ons h(6)-T(6) x = 0.
The matrix W(6) is called the recourse matrix of the model.

The set of equations (3) serve for modeling the way in which random vari-
ables influence the problem.

Chance-constrained ( or probabilistic-constrained) models

a) Joint constraint

rmin EcT(C)x

P({1 I Tx > h(6)}) _ a

Ax ocEb

X E It, u]

b) Separate constraints

minl Ec T (6)

P({• I tT(ý)x > h,(6)}) >! aj, Vi

x E [1,,.]
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In models (4) and (5) a, ai, Vi are the prescribed probability ( reliability )
levels for the fulfillment of the random inequalities.

From the model management point of view the following main constituents
can be identified.

Underlying algebraic structure

Neglecting randomness in the models above ( e.g. by replacing all random
variables by their expected value ) results in deterministic LP-models which
are considered as the underlying algebraic structure in the linear case.

Underlying random-variable structure

This stucture corresponds to the random variables ýj, j=l,...,k, and is de-
termined by the dependency-structure and probability distributions.

Underlying regression structure

The connection of the two previous structures is established via the linear
affine relations (3). The terms in the affine sums determine the way in which
randomness appears in the model.

The main model-management features of stochastic linear programming can
be summarized as follows.

( 1 ) Deterministic LP is a special case of stochastic linear programming
(SLP). This implies that a model management system for SLP should in-
clude or at least facilitate the use of the powerful model management tools
and systems available for LP.

( 2 ) SLP-models are hard to solve numerically: Their solution involves nu-
merically difficult NLP-problems (including multivariate integrals) or large
scale LP or mixed-integer problems. The various solution approaches sub-
stantially depend on the type of model and on the random-variable and
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regression-structures. Selecting an appropriate solver is a key issue here:
Solver performances for a given numerical model may differ by several orders
of magnitude, including also virtually infinite solution time.

( 3 ) Most of the solvers are designed for a determinisitic equivalent of the
original SLP-model. This means that developing a model-solver interface is
not merely a question of data-format, a model-transformation is also involved.
This transformation depends on the model-type and on the underlying struc-
tures as well as on the specific solver.

When considering a DSS containing also an SLP-component. features ( 2 )
and ( 3 ) imply that a reliable implementation would most likely involve a
full-scale MMS component for handling the difficulties outlined above.

( 4 ) Analysis features ( needed also for selecting a solver ) have to account
for the algebraic structure but should also include special features for SLP,
e.g. to determine whether a recourse matrix is of the complete-recourse type,
or whether a covariance matrix is positive definite. For this kind of model
manipulation operators see also Wallace and Wets [7].

( 5 ) The system architecture should facilitate extensions into the direction
of nonlinear or multi-stage stochastic programming models.

Main features of SLP-IOR

The basic idea is to build SLP-IOR around an existing algebraic modeling
system; GAMS has been chosen for this purpose, see Brooke et al. [1]. This
approach provides us with an excellent tool for handling the underlying alge-
braic structure and also facilitates extensions for nonlinear models. GAMS
serves as a uniform interface facility for solvers and supports the important
issue of model documentation. Powerful general-purpose solvers are also
available with GAMS. They serve for comparing solver performance.

The model manipulation operators are implemented on three levels:

- The elementary entites in SLP-IOR are the various arrays and random
variables appearing in the models. Typical manipulation operators are load,
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store, edit, show.

- The next level consists of the underlying algebraic-, random variable-
and regression-structures. Besides the operators for elementary items some
further operators like inject- into a model, extract from a model, sample or
discretize (for random variables ) are also available.

- On the highest level are the models themselves. High level operators
are e.g. solve, randomly generate, perturb, transform into another type, ex-
port/import.

Elementary items and the underlying structural elements serve as building
blocks for models.

The model library contains a collection of test problems from the literature.
We plan to endow SLP-IOR with a wide variety of solvers, for details see
Kall and Mayer [4].

The user interactions are performed via an interactive menu-driven interface.
A different approach is proposed by Gassmann and Ireland for scenario-based
SLP models. They define an extension of an algebraic modeling language to
account also for these SLP models.

To facilitate extension by new model-types or solvers the system is built in
an object-oriented style. The model management activities, the models, the
various array-types, the distributions as well as the solvers are implemented
in class-hierarchies. Rules concerning the models, or the model-solver con-
nection are implemented as polymorphic Boolean functions.

The present version of SLP-IOR is implemented for IBM/PC AT computers,
endowed with an arithmetic coprocessor and having at least 8MB storage.
Programming language is Turbo Pascal 6.0. To improve portability a C++
version will also be developed.



317

References
[11 BROOKE, A., KENDRICK, D., MEERAUS, A.: GAMS. A User's

Guide, The Scientific Press (1988)

[2] DOLK, D.R.: Model management systems for operations research: A
prospectus, in Mitra, G. (ed.) Mathematical Methods for Decision Sup-
port, Springer (1988) pp. 347-373

[3] KALL, P.: Stochastic linear programming, Springer (1976)

[4] KALL, P., MAYER, J.: SLP-IOR: A model management system for
stochastic linear programming - Sytem design, in Beulens, A.J.M., Sebas-
tian, H.-J. (eds.) Optimization-Based Computer-Aided Modelling and
Design, Springer (1992) pp. 139-157.

[5) KALL, P., MAYER, J.: A model management system for stochastic lin-
ear programming, in Kall, P. (ed.) System Modelling and Optimization,
Springer (1992) pp. 580-587

[6] KALL, P., MAYER, J.: SLP-IOR: On the design of a workbench for
testing SLP codes, Manuscript, IOR, University of Zurich (1992)

[7] WALLACE, S.W., WETS, R.J-B.: Preprocessing in stochastic program-
ming: The case of linear programs, ORSA Journal on Computing 4
(1992) pp. 45-59



"Two algorithms for solving linear programs with logical

constraints."

Dr. W. DE KEYSER

Vrije Universiteft Brussel
Centrum voor Statistiek en Operationeel Onderzoek
Pleinlaan 2
B-1050 Brussel
BELGIUM

Extended Abstract

Several problems such as blending problems, bundle pricing

problems, logic design and circuits problems, etc. can be

formulated as linear programs with logical constraints.

A logical constraint can be viewed as a constraint (or a

set of constraints) that is connected with a kind of logical

function that gives and indicates for which solutions this

constraint (or set of constraints) must be fulfilled and for

which solutions not. Two basic logical constraints can be

distinguished :

1. Either-Or constraints : all the constraints of q (with

1 5 q < p) out of p subsets of constraints must be satisfied,

but it is not necessary to satisfy all constraints of all p

subsets. If all constraints are linear, an Either-Or constraint

can be formulated as :

EITHER-OR h b i_ mh1gil out ph J b iIl,., 1I,.,ph)
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2. Conditional constraints : a set of constraints must not

necessarily be met by all feasible solutions; the constraints

of this set must only be met by those feasible solutions that

fulfil a specified condition. If all constraints involved in

the condition and in the set are linear, a Conditional

constraint can be formulated as

vk wk n kk

IF HMAX (MINh0 ((E ai. x. < BE])) = 1

n kTHEN Z a.. x. < bk i 1,..,mk
j 1 j J

Where :

(Ea. x.: i3Bk]= l ifE Z aý x1 Bk
= ij ' j < -i

= 0 otherwise

A linear programming model with m constraints, r Either-Or

constraints and o Conditional constraints (each Conditional

constraint contains mk constraints and rk Either-Or

constraints ) can be formulated as

Min 2 c. x.
j=t

nE. afi _ .. ,b

EITHER-OR E( a,, x, < bi' i-l,., J l 1 l,-h 1 1 h=l,.,r
q1 Out ph (1)

Vk 
kk 

nkIF ( {MNAND E[Z aj Xj _ i])

THEN n ak i ,..mkk,.,o

EITHER-OR (Z akht x < bkht i=ll mkht pkh
qkh out pkh |Jj-1j - '," 'l ' " "

)I h=l,..,rk
xj 0 j =
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Each instance of the above model for linear programming

with logical constraints can be reformulated as a mixed integer

program by using certain basic modelling tools. This

reformulation proves the solvability of the proposed model and

provides a first algorithm.

A new algorithm for solving directly the instances of the

model is constructed based on following observations :

1. The region of feasible solutions consists of several

separated (or adjoining) convex subregions.

2. The region of feasible solutions of the relaxed

problem -this is the linear program without the

logical constraints- is a closed convex cover of the

subregions mentioned in observation 1 if at least

one of these subregions is not empty; otherwise it

is empty.

3. At least one of the optimal solutions, if there are

solutions, is among the basic solutions of the

convex subregions. In other words, at least one of

the optimal solutions is among the basic solutions

formed by AU the linear inequalities in (1).

4. The SIMPLEX-algorithm moves from one basic solution

to another neighbour basic solution.
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The concept of this new algorithm is that of the cutting plane

algorithms; where the objective function is used to obtain the

cut-off-constraint. The algorithm can be described by the

following steps :

Step 0 : initial solution.

Take as initial basic solution(s) X* and as initial value of

the objective function z°, the optimal basic solution(s) and

corresponding value of the objective function of the relaxed

problem :

Mn

Mn Z c. x.j.1

aZI x, < bi i =i ,m

Xi ý! 0 j -= 1l,..,n

If there is a solution for the relaxed problem then go to step

1; else stop.

Step I : Check feasibility.

Check if one of the X: is feasible; in other words check if one

of the X* fulfils all the logical constraints.

If so, then X: is the optimal solution and the algorithm stops.

IF not, go to step 2.

Step 2 : Reduce convex cover

Determine for each basic solution X: the value of the objective

function in its neighbour basic solutions that are within the

feasible region of the relaxed problem. (Those basic solutions
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are formed by all the linear inequalities of the LP-CCEO).

Select as new z° the value with the smallest strict positive

increase.

Add the following constraint to the relaxed problem

n0E c. x. > z

Reoptimize and take as solution(s) X, the new optimal solution(s)

-if they exist- and go to step 1; if there are no solution then

stop.

A first comparison between the two algorithmic solution-

methods, on the criteria "Required memory-space" and "Observed

computational time", will be made.
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Extended Abstract

Consider a firm that owns a stock of capital goods K through which it can produce
Q(K) and it holds that Q(0) = 0, Q' > 0, Q" < 0. Q can be sold on the market

against a fixed price p. It is assumed that within this production process pollution is

hardly controllable. Rather it is subject to uncertainties of various sorts which cannot

technologically be controlled easily or would require extremely large investments. This

occurs for example in situations where there is a small probability of polluting.

We assume that pollution occurs following a compound Poisson process and approximate

this process by a diffusion (Wiener) process. Namely, let A be the rate at which pollution

occurs. Thus, the probability of pollution occurring in a time interval dt is Adi. Given

that pollution occurs let F(.) be the density of the pollution size. It seems reasonable to

assume that mean and variance of this size increase with production and therefore we

suppose that the pollution size has mean aQ(K) (a > 0 and constant), where a is the

expected emissions-output ratio (cf. Dasgupta (1982), p. 20), and variance a2&2Q 2(K)

(a > 0 and constant). A mean-variance diffusion normal approximation to this process

is well known (see Tapiero (1984), Tapiero and Zuckermann (1982)) and is given by

acQ(K)dt and Aa2a 2Q2(K)dt.

Therefore, if we normalize the cost per unit of pollution to one and dz is the (stochastic)

pollution damage in dollars in the time interval dt, its diffusion approximation is

dz = AaQ(K)dt + v'AoaQ(K)db, (I)
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where db is a standard Wiener process.

The firm can partly insure itself against the uncertainty of the emission cost, but a

drawback is that the premium rate includes a loading factor, which is often used by

insurance firms to account for the dollar margin paid for risk protection (see Tapiero

(1985)). If the part is insured is denoted by 0 and 6 stands for the loading factor, then

the premium rate equals

(1 + 6)OAaQ(K) (2)

and the emission cost arising from the part that is not insured is given by

(1 - O)AcQ(K)dt + /'A(l - O)aaQ(K)db (3)

In the model we suppose that 0 is exogeneously determined and we will try to establish

how the solution is influenced when 0 increases or decreases.

Capital stock is of the non-depreciating type and can be increased by investment:

dK = Idt (4)

In our quest to obtain analytical results we leave financing possibilities like borrowing

and issuing new shares aside. If we let the cash process of the firm include all transactions

(such as dividend distribution, investments, returns, insurance premiums, emission costs)

we obtain the following state equation for the cash balance:

dM = {pQ(K) - (1 - O)AaQ(K) - (1 + 6)OAaQ(K) - I - D)dt+ (5)

vXaua(1 - O)Q(K)db.

The firm behaves as if it maximizes the shareholders' value of the firm which can be

expressed as the mathematical expectation of the discounted dividend stream over the

planning period. Hence, the objective function becomes:

maximize Eo [j0 D exp(-it)dt] (6)
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The horizon date T is determined such, that it equals bankruptcy time. We assume that

the firm is bankrupt as soon as the cash balance becomes negative, which is expressed

in the following equation for the horizon date:

T = inf{tIM(t) !5 0) (7)

The assumption of irreversibility of investment and the nonnegativity of the dividend

rate are captured by the following inequalities:

D > 0 (8)

1 > 0 (9)

It is assumed that the firm does not spend more on investment and dividend than the

revenue net from expected pollution expenses:

D + I < pQ(K) - (1 - O)AaQ(K) - (1 + 6)OaAQ(K) (10)

To summarize: the model contains two state variables K and M, two control variables

I and D, and can be expressed as follows:

maximize Eo [Jo Dexp(-it)dtj (11)

1, D

s.t.

dK = Idt, K(0) = Ko (12)

dM = [{p - (l - O)aA - (I + 5)AOa) Q(K) - I - Dldt+ (13)
v/uaa(l - O)Q(K)db, M(O) = Mo

D > 0 (14)

I > 0 (15)
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D + 1: < { - (I - O),A, - (I + b)A0,a}Q(K) (16)

For this model to be well defined it is necessary that the right-hand side of (16) is positive.

In order to make sure that this is the case for all 9 E [0, 1] we introduce the following

additional assumption:

p - A(l + b) > 0 (17)

(17) implies that the revenue from selling one product exceeds the premium per product
to be paid when the firm is fully insured against the uncertainty of the emission cost.

In order to facilitate the notation we introduce the following symbols:

v = p- (1 - O)cA - ( + 6)0A (18)

dr= oa(1 - O)vA- (19)

If v = 1 and 6r = a our model reduces to the original Bensoussan and Lesourne model

with irreversible investment (see Bensoussan and Lesourne (1980)). Like in that model,

also here we have three candidate policies for optimality:

Investment policy: I = vQ(K), D = 0;

Cash Policy: I = D = 0;

Dividend policy: I = 0, D = vQ(K).

Given the parameter values, it completely depends on the values of the state variables

M and K which of the three policies is optimal for the firm to carry out (due to the fact

that the horizon time is state dependent the optimal solution does not depend on time).

Therefore we divide the M - K plane in three regions: investment-region (I), cash-region

(M) and dividend-region (D). From the analysis of Bensoussan and Lesourne (1980) (see
also Van Hilten, Kort and Van Loon (1992), Chapter 11) we obtain the most realistic

solution which is depicted in Figure 1.
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K

N

oN

Figure 1. The most realistic solution.

The solution of Figure 1 is only optimal when a certain condition on the parameter val-

ues is met. In the paper we establish in what way this condition and the configuration

of this solution is influenced when we change the values of the insurance part 0 and the

pollution occurrence probability A.

References

Bensoussan, A. and J. Lesourne, 1980, Optimal growth of a self-financing firm in an

uncertain environment, in: A. Bensoussan, P.R. Kleindorfer and C.S. Tapiero,

eds., Applied stochastic control in econometrics and management science (North-

Holland, Amsterdam), 235-269.

Dasgupta, P., 1982, The control of resources (Basil Blackwell, Oxford).

Hilten, 0. van, P.M. Kort and P.J.J.M. van Loon, 1992, Dynamic policies of the firm:

an optimal control approach (Springer, Berlin).

Tapiero, C.S., 1984, A mutual insurance diffusion stochastic control problem, Journal

of Economic Dynamics and Control 7, 241-260.

Tapiero, C.S., 1985, A dynamic insurance firm model and dividend optimization, Large

Scale Systems 9, 19-33.

Tapiero, C.S. and D. Zuckerman, 1982, Optimum excess-loss reinsurance: a dynamic

framework, Stochastic Processes and their Applications 12, 85-96.



A Comparative Study of Modelling and Problem-Solving
by Mathematical Programming and Logic Programming

LAszl6 Bila Kovkcs

Department of Computer Science, University of Copenhagen
Universitetsparken 1, DK-2 100 Copenhagen 0, Denmark

Presented at Symposium on Applied Mathematical Programming, Budapest, 6-8 Januar 1993

Extended abstract

1. INTRODUCTION

In the last fifty years mathematical programming has been playing a vital rote in studying dhc
behaviour of and solving problems related to complex systems consisting of numerot's inteirelatc~d
objects and activities. New disciplines like operations research and management science as well is
new branches of established ones had emerged to cope with the rather difficult develepment of
general and field specific adaptations of models, methods and algorithms.

By the end of 1970s and more characteristically during the 1980s the mathematical progrnmi..ino
based modelling and problem-solving had to face new challenges. This was due to increasing dr-manr
raised by computerization, automation and industrial development. Advances in computers and com-
puter science provided better hardware and software tools on the one hand, but created concurrent
disciplines, paradigms and system architectures for supporting human problem solving and decisions
on the other. Object oriented, functional and logic programming; artificial intelligence; decisior,
support systems, deductive databases, knowledge based and expert systems to name but a few.

Many of the mathematical programming models and algorithms ame very powerful and efficient
indeed, but a retrospective inspection might reveal apparent difficulties of their present applications,
some of which has been observed and discussed by practitioners in many years. Two of them should
serve as an illustration here. Perhaps the most severe symptom is the long development time of the
basic model and reasonably efficient algorithm variant, even if standard elements are built into it. Ali
substantial modifications and extensions require rather long time. Another inherent difficulty is the
handling of approximate or missing data and an incomplete model, in the sense that certain aspects.
properties, relations, types of constraints not yet known, but realized later during problem solving.

The present paper covers alternative approaches to modelling and problem solving by
mathematical programming and by logic programming. The logic programming paradigm is shortly
reviewed together with the principles nondeterminism and unification. Problem solving is conbidered
as a knowledge based search in a search tree which is unfolding through the problem solving prones.
in the extent needed to determine all the solutions. The conceptual discussiol on differences and
similarities in the process of development in the two disciplines will be illustrated by parallel
examples. Advantages and difficulties of both approaches are discused. An attempt is made tv
combine the two approaches in several different ways.



330

2. TERMINOLOGY

The main subject of the present paper is the support of human problem solving and decisions by
computer models and automatic or interactive problem solving systems. The central focus of attention
is the comparison of methodologies developed around paradigms of mathematical programming and
logic programming respectively. In order to get compact discussions and clear views a terminology is
introduced reflecting different roles and elements, that are important in the process of building up
such support systems. For example the word 'problem' has tree basically different meanings in our
context. It can be the initial problem of a human decision maker, one of the mathematical problems
within the computer model and a difficulty arising at any stage. These will be labelled as 'decision
problem', 'problem' and 'difficulty'. In the rest of the paper the following terminology will be used:

Expert is the human decision maker who has knowledge and expertise on his field and capable of
producing answers to questions, solutions to problems arising within his area, making high quality
decisions of different kind. He is the one who's decisions are to be supported the way he needs it.
Naturally, the word 'expert' might stand for a male/female person, a group of persons or perhaps
even an entire organization. In different fields or context he might be called decision maker, manager,
leader, engineer, designer, scientist etc.

Decision problem is a problem the expert is facing and wants to solve according to his knowledge
and the expectations of his closer and wider community. His result or solution to the decision
problem will be called decision, even if it is a plan, an estimate or a diagnose. Accordingly, all
problem solving activities of the expert is called decision process.

Supporter is the person or group who carries on discussions with the expert, makes a model
being a reflection of the real world around the decision problems which is captured in a certain extent
by problem described within the model and builds up a problem solver or shortly a solver, capable
of producing a solution to the problem. The process of finding the solution(s) is the problem
solving process regardless of automatic or interactive. The solver together with a computer environ-
ment for communication, interaction, input/output, report writing, etc.will be called support system.

When mathematical programming is used for decision support it is combined with a certain
environment, which is often models and methodology of operations research or management science.
Such modelling environments for logic programming are often knowledge systems, expert systems
or ar.ificial intelligence. These categories differ from each other both in focus and in methods and
techniques, but are closely related. In the further discussion, operations research and knowledge
systems are chosen respectively as typical environments.

3. PROBLEM SOLVING VIA MATHEMATICAL PROGRAMMING

3.1 What is the problem?
In the first phase of modelling it is vital to understand what kind of decision problems the expert

is facing and most importantly, what are the actual difficulties of the expert, influencing the quality of
the decisions he is coming up with and the resources required through the decision process.

The supporter with a mathematical programming/operations research background is looking for
decision problems or subproblems, that can be formulated as optimrdzation problems perhaps through
an operations research model, preferably with a good efficient algorithm. The variables, the
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constraints and an objective function are identified, the latter by selecting the most important measure
of quality of the decision. Other alternative measures are kept for secondary optimization or as
constraints with parametric level of satisfaction. If there are measures almost equally important, then
usually the weighted sum of objectives is used as an objective function. The expert is supposed to
give suggestions for the weights. The expert is to be convinced, that enormous perspectives are
opened into the structural examination of tie problem he never have hoped for

3.2 Modification of the model and the algorithm
The requirements, constraints, conditions and variables of the decision problem(s), that are

identifiable within the model framework, but cannot be handled by the existing efficient algorithms,
are reconsidered for inclusion in a modified optimization model. Linear approximation, aggregation.
decomposition, simulation, relaxation are examples of such techniques. In fact, these are attempts to
get a reasonably efficient algorithm for the extended problem, but in this phase algorithmic and modei
changes are almost inseparable.

3 3 Using real data
In the next phase the modified and usually extended algorithm should be tested against real data,

using combinations of possibilities built into the support system in the course of basic development
Very often the standard source of data (e.g. regular database) is insufficient and special data collection
is needed. Perhaps the expert could not do as extensive data manipulations as done by many of the
support systems easily. ('The human is not a machine.') But the opposite can also be true. Some
human mental activities might be difficult to follow by the machine, thus a large amount of date and
very complicated algorithms may be necessary to cope with tasks easy for humans. ('The machine is
not a human being.') Additionally, the algorithm may behave very differently on. almost random data,
than on real data. Field - or problem specific modifications of the algorithm may become advisable or
even necessary to get an acceptable performance.

3.4 Testing the model and algorithm for real decision problems
There is almost never enough time for off-line testing of the support system on real decision

problems, i.e. simulating the entire decision environment and full decision process for the purpose of
testing the system. Usually only a few quite artificial or at least isolated test problems are created and
used over and over again. Many of the requirements and demands become obvious only when the
system is in regular use, leading to serious difficulties and even to rejection of the system, if it
reaches this stage at all.

3.5 Forming and standardizing the support system
In the ftral phase the standardization of the input and output of the models and algorithms is done.

The user guide describes how to use the system, including the parameters, their standard settings.
other possible values and their modifying effects on the algorithms (step sizes, precisions.
frequencies of numeric corrections, selection of heuristics and other strategies, etc.)
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4. REFLECTIONS ON THE MATHEMATICAL PROGRAMMING APPROACH

Advantages of optimiztionloperations research approach
"* It is supported by a vast amount theoretical research results.
"* More then forty years of experience in modelling and problem solving including

implementations of algorithms and code optimization.
"* Many professional operations research group, management science and other groups develop

and reuse models for a large variety of applications.
"* There are many well understood and efficient algorithms for standard optimization problems,

available also in software packages.

Difficulties with the optimization based decision process support
Dispite of all these facts, several symptoms indicate serious difficulties with introducing

optimization based support systems into the real practice in cases when the application field is in a
dynamically changing environment or the types of decision problems cannot be described in advance
or some of the data required by the models is not available. These symptoms include unreasonably
long modelling and systems development time, strong difficulties with modifying the model or the
view of the problem solving. There ame often claims about the flexibility of the decision support the
system can provide considering starting points, priorities, special conditions, amount and kind of data
requested by the support system or the variety of solutions obtained at the end of a session.
Interactive decision support and problem solving seems to be particularly difficult. The decision
problems should be specified in terms of the mathematical problems of the support system.
Interfacing the two different way of thinking is difficult and rigid.

5. THE THREE PILLARS OF LOGIC PROGRAMMING

5.1 What is logic programming?
The basic idea of logic programming is to describe properties and relations of the objects and

concepts of the area of our present interest ('the universe of discourse') in terms of predicate logic
and getting answers to our question!; and solutions to our problems by the help of a logic reasoning
system. The questions or problems, posed to the logic program, are called goals. In other words the
reasoning system, called inference engine, is supposed to find the condition under which our goal is a
consequence of the logic program. Then this condition is a solution of our goal (problem). If there are
several solutions, the inference engine is supposed to find all of them. The strength of logic
programming is provided by the three main components called unification, non-determinism and
inference engine, which are informally summarized below.

5.2 Unification
Suppose, it is given a goal or subgoal G which is to be solved. From a high level viewpoint,

unification has three main functions. Firstly, to find one or more knowledge description K, that is
applicable for solving G. Secondly, if the knowledge K is too general for goal G, then it should be
specialized appropriately. If the knowledge K is not sufficiently general to handle/solve the goal G,
then the goal should be appropriately specialized. Usually specialization of knowledge K and goal G
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is done simultaneously by the unification process. It should be noted, that specializing a subproblem
by a condition implies, that the rest of the problem must be specialized the same way. If the
application of knowledge K to solve goal G is not successful or alternative solutions ame wanted, then
other applicable knowledge descriptions are used, according to the paradigm of nondeterminism.

53 Non-determinism -

Informally, nondeterminism means, that alternative definitions, properties and relations of the
objects as well as alternative methods, heuristics, strategies and tactics may be used in the logic
program. As long as at least one combination of these alternatives can positively support the
reasoning system (inference engine) finding all solutions of the stated goal is guaranteed. In the
opposite case the inference engine should be able to prove, that on the basis of the knowledge
provided by the logic program, there is no solution to the goal.

5.4 Inference engine
The main task of the inference engine is to show whether a stated goal is a consequence of a given

logic program, representing the present knowledge about the field under consideration. It is an
essential part of the task to find gradually the conditions under which the goal is provable from the
logic program, because this set of conditions is considered the solution of the stated goal/problem. All
alternative solutions should be determined.

5-5 Prolog as a logic programming based computer language
In sections 5.2-54 some of the basic principles of logic programming were indicated. The Prolog

language inherits the declarative semantics of logic programming. Prolog has a procedural semantics
as well, which property and the inference engine makes it executable on a computer. This does not
mean however, that the Prolog language is procedural, though - being a general purpose computer
language - one can, and occasionally does write procedures in Prolog. A more detailed explanation is
beyond the scope of the present paper, but one can say that the vast majority of a good Prolog
program is declarative in nature. This means, that it is not a series of instructions to the computer, but
a set of definitions of objects, their properties and relationship. It is 'not doing anything' until the
goal/subgoal is stated. After this, the logic is interpreted in such a way, that the goal is proven/solved
by the inference engine. That activity might require very different kinds of reasoning, depending on
what the goal is. Shortly, from the point of view of the run-time behaviour of the logic program, it
can be considered as a condensed description of many potential algorithms, not necessarily known
before the goal/problem is stated. Even the same goal/subgoal might be reasoned about in different
ways, often resulting in several conceptually different solutions.

6. PROBLEM SOLVING VIA LOGIC PROGRAMMING

The logic programming methodology makes it natural to think in terms of field of interest, initial
problems with gradually discovered additional properties and relations of its objects, and finally,
knowledge needed to interpret the kind of problems we want to understand and solve, rather then
defining a particular mathematical problem and an algorithm to solve it. Incomplete problem
descriptions and incomplete information is very common in (real life) decision processes. The main
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point is to advance the problem solving and the problem definition in parallel. It is usually difficult or
even practically impossible to foresee all the requirements, conditions, criteria and relations of
elements in the as yet unknown 'solution' to the decision situation, which are often highly dependent
upon the kind of solutions we are trying to impose.

7. REFLECTIONS ON THE LOGIC PROGRAMMING APPROACH

Advantages of the logic programming approach
High problem solving power including automatic or interactive ways of

"* Finding applicable knowledge within the knowledge base
"* Knowledge and problem specialization
"* Problem decomposition
"* Using and combining alternative definitions, relations and methods
"* Applying problem solving strategies and collected experience
"• Conflict resolution

Problem formulation matters
"* Problems need not be specified at development time
"* Requirements are not restricted to have a specific mathematical form
" Incompiete problems or incomplete information can be handled
"* A concept level language can be developed for problem description

Generalit, flexibility and extendability of the support system is ensured by
"* Declarative programming for human beings and computer interpretation
"* High modularity and flexible communication between sentences, the basic program units
"* Self standing sentences accepting many input/output patterns

Rapid prototyping and incremental systems development supported by
"* Automatic knowledge inclusion, search and specialization
"* Alternative definitions of objects, their properties and relations
"* Meta-programming facilities

Concept development support, including
"* Natural language interpretation facilities
"* Defining new concepts in terms of relations of existing concepts
"* Representing different ways of thinking and reasoning
"• Flexible representation of knowledge and meta-knowledge
"* Finding contradictions and resolving conflicticts

Difficulties with the iogic programming approach
The traditional software development technology is often inadequate

• The analysis-planning-coding-testing cycle
- Open or hidden procedurality, including program control elements
- A concept description serving present purpose(s) only
- Precise program specifications may exclude hidden intentions, usual testing is insufficient
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Keeping a high level of generality/flexibility with improving efficiency
"• The ever improving efficiency should come mainly from more knowledge
"* Logic level efficiency is also important, but should be kept clear and understandable
"* Implementation level efficiency should be kept separated and hidden
"* Limiting the potentially vast search space by meta-knowledge
"* Preventing combinatorial explosion by- appropriate techniques

Knowledge engineering is difficult
"* Knowledge acquisition requires experience, courage and understanding
"* Knowledge representation should be general and flexible
"* Run-time addition of knowledge requires strong knowlegde management

Distance from traditional support systems
"* Existing models, problems, algorithms cannot be directly 'plugged-in'
"* Experts using more traditional approaches need time/understanding
"• It is quite difficult to accept conceptual support from a computer

8. COMBINING THE TWO APPROACHES

Extensions of optimization problems and algorithms by logic programming
The mathematical programming approach might benefit from a logic programming extention and a

knowledge base in the following areas:
"* Natural language interface between the expert and the support system
"* Man - machine interactions, 'collective' problem solving
"* Problem transformations
"* Pre- and postprocessing of data, requirements, criteria and solutions
"* Reasoning outside the scope of the mathematical model
"• Supporting formulation of problems from intentions
"* Selecting and combining existing algorithms for well-defined problems
"• Finding contradictions and resolving conflicts
"* Using a knowledge base to improve algorithm performances
"* Development and use of generic algorithms

"* Generation and experimentation with various heuristics

Extensions of logic programming by mathematical programming techniques
A logic programming based decision support system might benefit from optimization techniques

and models in several different ways
"* Traditional models and algorithms as internal utilities
"* Relaxations and estimates for pruning the search tree
"• Grouping and ordering the set of solutions e.g. by lexicographic methods
"* Repetition free generation of all solutions
"* Sampling techniques in case of very many solutions
"* Selection from alternative heuristics
"* Reorganizing the search space
"* Partial ordering techniques
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9. CONCLUSION

The mathematical programming and the logic programming based approaches to modelling and
problem solving in order to support decision processes, arm quite different. Serious efforts were made
for deeper integration of mathematical programming into logic programming. One of them is the
definition and implementation of Prolog I1I, in which linear programming with a flexible application
of the simplex method, is part of the language and is readily available as part of the declarative
programming. Other constraint satisfaction approaches are also being used for logic programming. In
constraint satisfaction the actual numerical problem solving is delayed if numeric data are not yet
available or the selection is not unique. In such a way the advantages of declarative programming can
be preserved. The suggestions indicated in section 8 indicate,that there are many more reasons for
combining the two approaches, the work has only begun.
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Introduction

Computer based languages for constructing and analysijig Mathematical

Programming models have been investigated over the last two decades.

There are many experimental and commercial systems currently available

which provide modelling support. Most modern modelling systems enable

the modeller to specify models in a declarative algebraic language. A set of

algebraic statements in a modelling language both specifies and documents a

model, whereas the generation of a constraint matrix takes place in the

background.

Although some modelling systems have been extended to incorporate

non-linearities and to help with a greater variety of discrete optimisation

problems, very little attention has been given to the modelling of discrete

programming extensions of LP problems. Many Mathematical Programming

problems involve logical restrictions which may be expressed relatively easily

using propositional calculus, but the reformulation of such statements into

Mixed Integer Programs (MIPs) is conceptually difficult. This reformulation

may be carried out systematically, but as yet there is no computer support

for this task within a Mathematical Programming modelling system.
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We present a reformulation procedure for transforming

statements in propositional logic into integer or mixed integer programs;

this procedure makes novel use of the Reverse Polish notation and the

resulting expression tree. We define a new syntax involving logical

propositions and operators whereby the structure of an LP modelling

language is extended. This method is particularly suitable as a modelling

technique which allows one to automate the reformulation process to

construct equivalent IP or MIP models. The final goal is to integrate this

modelling function into an "intelligent" mathematical programming modelling

support system.

Logic Forms Represented by 0-1 Variabies

The main task of reformulation is to transform a compound proposition into

a system of linear constraints so that the logical equivalence of the

transformed expressions is maintained.

In order to explain the reformulation process and the underlying principles

more clearly, two cases are distinguished namely, connecting logical variables

and logically relating linear form constraints.

Let P1 denote the ith logical variable which takes values TRUE or

FALSE and represents an atomic proposition describing an action, option or

decision. Associate an integer variable with each type of action (or option).

This variable, known as the binary decision variable, is denoted by "dj" and

can take only the values 1 and 0 (binary). The connection of these variables

to the propositions are defined by the following relations:

aj = I iff proposition P1 is TRUE

aj = 0 iff proposition Pj is FALSE

Imposition of logical conditions linking the different actions in a model is
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achieved by expressing these conditions in the form of linear constraints

connecting the associated decision variables.

Using Propositional Calculus, a list of standard form "variable

transformations" are defined. These transformations are applied to

compound propositions involving one or more atomic propositions Pj,

whereby the compound propositions are restated in linear algebraic forms

involving decision variables.

Bound Analysis/Logically Relating Linear Form Constraints

Consider the linear form restriction

n
LFk: Zakjxjtp}bk

j-I

where p defines the type of mathematical relation, p E -< , = . Let Lk,

Uk. denote the lower and upper bounds, respectively, on the corresponding

linear form, that is

n
Lk E Z akjxj-bk •_ Uk.

j-I

Finite bounds Lk and Uk are used in the reformulation procedure. These

bounds may be given or, alternatively, can be computed for finite ranges of

xj. For example, if ej _ xju (j = l,...,n) then

Lk= E akjej + E akjUj-bkand Uk=Eakjuj +E akjeq -bk
JEPk JENk J61pk jENk

where P= akj > 0) and Nk akj < 0).

A 'Logical Constraint in the Implication Form" (LCIF) is a logical

combination of simple constraints and is defined as
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If antecedent then consequent

where the antecedent is a logical variable and the consequent is a linear form

constraint.

A "logical constraint in the general form" can be always reduced to an

LCIF using standard transformations. To model the LCIF, a 0-1 indicator

variable is linked to the antecedent. Whether the linear form constraint LFk

applies or otherwise is indicated by a 0-1 variable 1'

Sk = 1 iff the kth linear restriction applies

= 0 iff the kth linear restriction does not apply

A ,et of constraint transformations are defined which illustrate how

•his binary variable, uaamelV the indicator variable of the antecedent, using

ihe bound value .;tlaie:, to :-he liitar form restriction, that is the consequent.

Polish Notation and Expression Trees

Using the normal lprecedence ,Qperators and the conventional evaluation of

expressions the following logical form

PvQv-RAS
would be written as

((P V Q) V ((- R) A S)).

Not using brackets as above but simply placing the operator symbols

at the nodes, one can build up a tree representation using Polish notation.

Choike of the directions in which the variables and symbols are scanned

leads to two well known variations, namely, forward (right to left scan) or

reverse (left to right scan) Polish notation. The Polish notation for an

.xpressior is not unique and within forward Polish, for instance,

eafly-operator form or late-operator form leads to two different notations and

,orrersponds to inserting Church's brackets from the left or from the right
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respectively. The given expression can be written as

((P V Q) V ((- R) A S)).

- or

(P V (Q V (- R A S))).

The tree representation for the first of these expression is shown below.

((PVQ )v(-R AS)

P \ S

R

The Algorithm

The reformulation of a logical statement into inequalities is not unique: in

fact as a result of the many, but equivalent, forms any logical statement can

take, there are often different ways of generating the same or equivalent

mathematical reformulations.

One possible way would be to convert the desired expression into a

normal form such as the conjunction of disjunctive terms into the

corresponding clauses. Each clause is then transformed into a linear

constraint so that the resulting conjunctive normal form can be represented

by a system of constraints which have to be satisfied invoking the logical

"and" operation.

In the absence of a systematic approach, the above process appears to

be unduly complicated. This has motivated us to propose a systematic
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procedure to reformulate a logical condition imposed on a model into a set of

integer linear constraints. Our approach, in essence, involves identifying a

precise compound statement of the problem and then processing this

statement. This compound statement (S) is represented as an extended

expression tree by the Polish notation and two working stack mechanisms,

namely VSTACK for variables and CSTACK for constraints are created. The

expression tree is traversed, that is, the expression is analysed and

constraints are created in CSTACK using variables which are introduced in

VSTACK. The steps of the procedure which fully processes and resolves the

tree are described in our presentation.

Outline of a Prototype System

The reformulation procedure thus described is illustrated by means of an

example. Consider the following problem:

In order to satisfy a country's energy demands, it is possible to import

coal, gas and nuclear fuel from three neighbouring countries. There are three

grades of coal and gas (low, medium and high) and one grade of nuclear fuel

which may be imported.

The import costs for each fuel (in £s per gigajoule of energy obtained)

are provided together with upper and lower limits on the fuel supplied by

each country. The problem is to decide what quantities of each fuel should

be imported from each country so that the total import cost is minimized and

the country's energy requirements are met.

In addition, there are the following logical conditions which must also

be satisfied:

(i) Each country can supply either up to three non-nuclear, low or medium

grade fuels or nuclear fuel and one high grade fuel.
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(ii) Environmental regulations require that nuclear fuel can be used only if

medium and low grades of gas and coal are excluded.

(iii) If gas is imported then either the amount of gas energy imported must

lie between 40 - 50% and the amount of coal energy must be between 20 -

30% of the total energy imported or the quantity of gas energy must lie

between 50 - 60% and coal is not imported.

The model specification for this problem including the reformulation of the

logical conditions is detailed in our presentation. An extended syntax is also

described which illustrates how reformulation support for logical statements

may be incorporated into the modelling system MPL (Maximal Software).

Concluding Remarks

The zero-one mixed integer programming formulation of logical conditions

presented as propositional calculus statements is an important research topic

in discrete modelling. In our work the established syntax of representing LP

models in an algebraic form is extended to incorporate logical restrictions set

out as propositional calculus statements. The methods described do not

necessarily achieve the most computationally efficient model after

reformulation. Our main aim has been to reduce the chore for an experienced

analyst, and also to provide support for a problem owner who is capable of

describing his problem but may not be experienced in reformulation

techniques. A system constructed in this way not only provides discrete

modelling support but can also be used as a teaching aid to new modellers in

MIP reformulation techniques.
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ABSTRACT

Madrid and Ramsay Models for Slovak Economy.

Adam Lasiak, University of Economics,

Bratislava, Odboj~rov 10.

The Madrid's Model (3) the basis of which is PontriaginIs

approach on the basis of ý-eynesian economy type was adapted and

solved for the Sloval. economy with the help of NLMOS software.

Ramsay s model (4) is the mathematical and economic

application for optimal repartition ofinvestment and consumption

as a framework of national income growth in Slovakia. GAMS

software presents special possibility to solve this variational

problem with MINOS adaptation.

We have used the following adaptation of Madrid s model

(proposed by Mc Fadden in 1969, see (5)) for Slovav. economy.

General accounting identities. Adaptation for Slovak economy.

Y(k) = C(V) + S(k) + T(k) GNPB = -267389.. + 6.876 GNPA

+ T + C

X(k) = C(k)+IU')+ýe(k)+G(P) X = -5738.8 + 0.497 HND + G + C

+ 12408.9 RIN

B(k) = E - MP.k) - ) B = 45739.5 - 0.286 GNPE + E

- 1171.8 REM -12408.9 RIN

R(k) = YUk) - X(k) R = GNP8 - X

T(k) = Y(k) - C(k) - S(k)
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Behaviorai equations.

S(k) = -ao + a 1 Y(k} ) at> A Aggregate saving

t'(k) = -bo + bY(K) , b 1 > C Imports of goods and services

1(k) = dc - dir(k) d4 C; Domestic gross investment

K(k) = co - cjr'k) , c: ; Net Capital outflows

C(P) ý ma + m 1 Y(k) mi70 Aggregate private consumption

E Exports (exogenous.'

Control variables.

dr(k ) dr() = r+l) --

k= where

dD ( ) -iL U = , ) - TP

Symbols and parameters.

r(..) , r ..... r['OMest3c- ,r-ii l1 flte-et rate

or foreigr, antr-est '-ate

Y( ) = GNFB ... Io5TIest a: pr'oduct,_ ,n

X , = X. .. o.g. Agrecate e :penlt,_,re

G ........... qr-egate pu-lblic consumption

T(1; ..... T÷ e,

NFP I t ) Lo..... Domestic producLton and sAving

HND ..... rati-,s_ ntional income

REM ..... Chanqe rAte for UELl

RIN ..... Nomina•l domestic interest rate

B(k) = B ..... Net surpius in Payments Balance

) = R ..... Balance betweern Ressources and

Expend. tUre
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The quarterly statistical indicators were quoted from the

period 198901 - 19q1Q4 and the solution of the mooel variables

are given for the period of 199201 - 199304.

The model was controlled by taxes, public consumption and

nominal interest rate. The -oal of the model was maximalization

of the GNPB.

The solution of the model indicates that tne tpx vcl, e fry-

Slovakia was at the limits of possibility Slovak economy, the

interest rate was not significant as a parameter of control.-The

relation for Net surplus in balance of payments can be solved

only as an approximate goal.

All statistical indicators, derivated parameters, given

relations of model were tested on the basis of the SORITEC soft-

ware. The model was calculated also for the given periods Iq8901-

199104. In this case it is possible to use the Optimal Control

Theory results to calculate the control that minimizes the

deviations from the desired control trajectory and to make en

analysis of the past period.

The basic core of the model may be dscribea in the

following form:

x (k+l) : : I : (U :: (k) : : :

; : ~= ----------- : : : + : -- L UKL

:y ( k+lI) : : I :0 : : y ( k) : : 0) :

x(k)

y(k) = :0 : I :

y(k.)

:dr(k): is the control vector,where

u(k) : dr(k) = r(k+l) - r(P.) is a monetary

:dD(k): measure and dD(k) = 11(k+1) - E1(k),
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D(k) being the domestic deficit and

D(k) = G(k) - T(k) is a fiscal

measure.

X(k) = : : is the state vector.

:y(k)

c:+ rn b1 d1 - n b: is input distribution

B: matrix

-n d, n with n = 1/(ai+b2)

If we are interesteds in the open loop control of the

system (see detail in (7)):

: B -k 1) : ) :: dr÷(•)

: = : + B: : and if

y yk+1) y : : : dDO( )

E I - es : is the desired

x0 (I) = :: trajectory and

yUC)) ( + eP y : (C) ' es Z 1)

(0 - ey )

the open loop control should have the form:

-B(0) eE 1 - ep )K C)

uoU.) 0) :+

: 0 y (0) e (l 1+ ey )K•
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and transforming xo(k) into dynamic equilibrium path. But for

the Slovak economy case it is possible only with some

approximation and deviation from the goals. The dynamic equi-

librium path for Slovak economy in the next future is very hard

to satisfy.

The Ramsay model ((4),(6)) modification propsed for Slovak

economy has the following form set:

tr

MAX U = SUM (btlogCt)

t= t

A(t)•i.t = Ct + It - National receive

It A(I + ac)t - Gross investment

A = /(KO - is the initial condition

A(t) A(1 + w)(l-e)t

Yt Ct + It - "National income'

Kt+1 = t + It - Capital for the producing

sphere

w Kt • It " w" is labour growth rate

T T

and the initial conditions: Ct • Co, It , I, Ft >f!o.

The another symbols: U - Utility function

Ct - Aggregate consumption tfor all inhabitans)

bt - Discount factor (necessary to make the

parametrization in the steps of

the optimalisation)

e - Elasticy

w - Labour growth rate

ac - The mesure for labour capacity absorb-

tion: 1/(K/L), L - labour capacity.
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Y(t) = F(exp(r))(dKeL(1-L)) is the production function

as a checking function for National receive (inhabitans and

enterprises) when the problem of taxes is outside the Ramsay s model.

(For the Taxes problem see the Madrid model.)

All parameters anO indicators were derivated by SORITEC

software. The adaptation of GAMS software with MINOS algorithm

was successful.

Optimal solution of repartitlon of "National income" for

Slovak economy was the tollowing:

(Mld ics) Ni Consumption Investment Capital stocV

1990: 163.7 1u7.u 56.6 1163.6

1995 169.8 112.9 56.8 1446.6

20X 175.8 119.2 56.8 1741.2

(i)

1990 185.9 127.1 62.8 1163.6

1995 193. 10.5 62.8 1477.9

200C) 200.5 I7.7 62.8 1804.5

(i) The first table has the statistical classification according the

old calculatiom for Material product. The second - in

accordance with the Gross Domestic Product.

The Madrid and Ramsay models are only one part of the

system models wrich are described as succesive approch to market

mechanism in SlovaV economy. The ley model for the period of tra-

sition is MODELEP - the model on the basis of linear and

nonlinear econometric equations (set of 75 equations) which is

outside of this paper.

The possibility of economic growth is described in the pe-
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riod 198901 - 199104 also by means of extensive and intensive

factors which have been developed into a model through dynamiza-

tion of different production functions on the Hamilton s princi-

ple of the least change of the economic state. For the mentioned

period we notice a decrease-of the total economical growth dyna-

mics as well as the influence share of the intensive factors.

These mentioned mostly long-term tendencies follow also

from the results of using other analytical tools as the IS - LM

model. But with application of the IS - LM model were some pro-

blems because at present vie are in a period of transition from

central to market economy. Moreover it is very cifficLIt to

obtain and to precise the indicators of money - market now. For

these reasons it i1 verv' difficult to achieve one equilibrium

among the goods and sevices and the money - market.

For the f'eynesian cr classical monetary approach in our mo-

delling the way to market mechamism there are following reasons:

The difference lies in tne assumption of classical macroeconomics

that, prices and viages are flexible - trussting that after an

economic shock, the price flexibilty can restore full employment

very fast. That s not the case for eastern countries, neither it

is Slova~ia. In fact, the i:eynesian revolution combined two ele-

ments. First, it is the concept of agragate demand, in which

agragate spending would be driven by the consumption function

and by investment decisions. Second, the price flexibility in

the transition period is only in a one-way one ano wages are

under consensus of discrete inflexibility or sticky. (See Paul

Samuleson - William Nordhaus in (7).
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Abstract
The use of interior point method (IPM) based optimizer as a robust linear
programming (LP) solver is now well established. The default parameter
settings of new generation of IPM solvers are sufficient to process a wide
class of LP problems whereas traditional sparse simplex (SSX) based solvers
may require a considerable adaptation and tuning from one model class to
another. The progress of IPM iterations is not hindered by the degeneracy or
the stalling problem of SSX, indeed it reaches the 'near optimum' solution
very quickly. The SSX algorithm, in contrast, is not affected by the boundary
conditions which slow down the convergence of IPM.

The extreme point solution is the corner stone of the SSX algorithm and use
of the corresponding optimal LP basis as a starting point for solving integer
programming problems or post optimal analysis amongst others is well known.
The IPM algorithms usually converge to a point in the interior of the optimal
face (non-extreme point) and their poor behaviour near the boundary make it
difficult to apply IPM in the same way as the SSX.

To take advantage of the attractive properties of IPM and SSX, we have
designed a hybrid framework whereby cross over from IPM to SSX can take
place at any stage of the IPM optimisation run. The cross over to SSX, at a
non optimal solution, involves the prediction of the optimal face. Our
prediction incorporates several methods suggested by us and other researchers
in this area.

We review a number of cross over methods and test their suitability for
optimal and intermediate cross over. Some computational results on a set of
degenerate and non degenerate test problems are given.
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1. Introduction

The use of IPM for the solution of linear programs provides a number of benefits which are

summarized below. For large or highly degenerate LPs IPM is usually faster than the SSX

solver. Whereas SSX based algorithms require considerable adaptation and control parameter

tuning from one model class to another, default settings of IPM are sufficient to process a

wide class of LPs. IPM is not only robust in this way, its progress is not hindered by the

degeneracy or the stalling problem of the SSX; indeed it reaches the "near optimal" solution

very quickly. SSX algorithms, in contrast, are not affected by the boundary conditions which

slow down the convergence of IPM.

There are three well known and well exercised extensions of traditional LP namely,

successive linear programming, integer programming, and post-optimal analysis. In all these

case- optimum solutions for a family of problems need to be computed which in turn

involves reoptimization from the last computed primal and dual optimum basis (extreme point

solution). The extreme solution is the corner stone of SSX algorithms and the use of the

corresponding basis as starting point is naturally applied in this context to solve efficiently

a family of similar problems. IPM algorithms, on the other hand, usually converge to a

point in the interior of the optimal face. This property and the behaviour of the IPM

algorithm near the boundary (Megiddo 89) make it difficult to apply IPM in the same way

for a family of similar LP's. Some researchers have attempted to develop new theory and

methods that do not depend on the extreme point representation (Adler 89) (Guler 92).

Alternatively, the fast initial convergence of IPM to a near optimal solution can be followed

up by the superior near optimal to optimal convergence of SSX algorithms. This strategy

is not only computationally attractive it also provides the (currently) desirable extreme point

solution and the corresponding primal and dual optimum basis. Most researchers ( see for

example (Megiddo 88,91), (Bixby 92), (Mitra 88) ) consider this latter approach to be a

promising computational scenario. This hybrid approach, however, requires a substantial

performance superiority of IPM and an efficient IPM-SSX integration to make it worthwhile.

The research issues reported in this paper are mainly concerned with extending IPM whereby

it can be brought into the mainstream of solving large LP's. After this introduction, in

section 2 we review and extend methods for predicting the variables that are active in the

IPM solution before optimality is reached. In section 3 we describe methods for converting
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the IPM optimal or predicted solution to an extreme point solution. In Section 4 we present

experiments in early and optimal cross over from IPM to SSX using alternative prediction

criteria. Our conclusions are summarized in section 5.

2. Prediction of variables in an optimal solution

Consider the following primal and dual LP problems:

(Primal) Min c rx S.T. Ax--b, xkO

(Dual) Max b ry S.T A ry+z-c, zO (2.1)

AE•R"', x,z,ccR, y,bER'

An interior point algorithm applied to these problems generates a sequence of strictly interior

points and theoretically converges to an optimal solution which is a boundary point of the

feasible polyhedron. The actual termination of the algorithm, however, is not on the

boundary of the polyhedron but in the interior (Levkovitz 92) close to an optimal solution.

At the optimal solution, strict complementarity is enforced, that is:

c Tx-bTy=xTz=O and XZe=O (2.2)

We define the indicator sets of active (positive) and dormant (non positive) indices o(v), 5(v)

of a non negative vector v as:

vER^, vtO , o(v)=(i,v,>O), Y(v)=j1,..,n)-o(v) (2.3)

Of all the primal optimal solutions and the dual optimal solutions of (2.1) there exist at least

one solution pair (x), (y',z') where the strict complementarity of (2.2) applies, or in terms

of the indicator set a defined in (2.3):

(i) a(x')fo(z')=$ and (it) a(x')Uao(z)=(l,..,n}

(2.4)

We call this solution the strict complementary solution. We note that the second condition

of (2.4) does not hold if in both the primal and the dual problems are degenerate. This case

is considered in section 3.

Guler and Ye (91) show that a class of interior point methods which also contains the primal

dual predictor corrector algorithm (Mehrotra 90) generates a sequence of feasible pairs
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the IPM optimal or predicted solution to an extreme point solution. In Section 4 we present

experiments in early and optimal cross over from IPM to SSX using alternative prediction

criteria. Our conclusions are summarized in section 5.

2. Prediction of variables in an optimal solution

Consider the following primal and dual LP problems:

(Prinval) Min c rx S.T. Ax=b, x>O

•Duh Max bTy S." Ary+z=c, z>O (2.1)

AeR!", x,z,cER^, y,beR"

An interior point algorithm applied to these problems generates a sequence of strictly interior

points and theoretically converges to an optimal solution which is a boundary point of the

feasible polyhedron. The actual termination of the algorithm, however, is not on the

boundary of the polyhedron but in the interior (Levkovitz 92) close to an optimal solution.

At the optimal solution, strict complementarity is enforced, that is:

cTx-bTy=xrz=0 and XZe=O (2.2)

We define the indicator sets of active (positive) and dormant (non positive) indices a(v), 5(v)

of a non negative vector v as:

Veit', v2:0 , 0M~v){,v>OI, 6-(v)--ll,..,nj-o(v) (2.3)

Of all the primal optimal solutions and the dual optimal solutions of (2.1) there exist at least

one solution pair (x ), (y *,z *) where the strict complementarity of (2.2) applies, or in terms

of the indicator set a defined in (2.3):

(i) o(x')fo(z)=41 and (it) a(x*)Uo(z*)=(-,...n) (2.4)

We call this solution the strict complementary solution. We note that the second condition

of (2.4) does not hold if in both the primal and the dual problems are degenerate. This case

is considered in section 3.

Guler and Ye (91) show that a class of interior point methods which also contains the primal

dual predictor corrector algorithm (Mehrotra 90) generates a sequence of feasible pairs
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(x, ýz ) such that:

min(XAZkA)>,( ) (2.5)
XArzk n

For this class of algorithms, they also-proved the following theorem:

Theorem 2.1l: At iteration k, kgt kA='jx z } and assume the LP data is rational. If L is

the input length of the problem then for all algorithms that satisfy (2.5) if (xA)zk<2"3L,

ok=o° .

Theorem 2.1 shows that when an interior point is close enough to the optimal solution, the

set a" of active variable indices can be identified. The dormant variables can be set to zero

and a smaller problem can be solved to retrieve the 'exact' optimal solution on a boundary

of the polyhedron.

Although theorem 2.1 gives a theoretical stopping criterion for the primal dual IPM, in

practice, a more realistic criterion is needed. Mehrotra (91-2) proves that whenever the

set a* can be identified, the algorithm can terminate the normal execution and perform the

following computation to retrieve the primal and dual optimal solutions:
k(Primal) A,.Axz.-b-A .z*.

(2.6)
(Dual) A TAy-C..-AT yk-zk.

These equations can be solved in a single 'IPM-like' iteration.

There are some obvious advantages in terminating IPM before reaching the close

neighbourhood of the optimal solution and by applying a procedure similar to (2.6). Some

of these advantages are listed below:

(i) at an early stage of the IPM search procedure, namely 50% of the total number of

iterations, IPM finds a near optimum solution which is often within 80-90% of the final

solution.

(ii) the numerical stability of the algorithm deteriorates when the algorithm gets close to the
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boundary, the computation of the trajectory in the k* iteration of IPMABC includes the

computation of the diagonal matrix Dk=Xk(Z)-I. The diagonal of this matrix can have some

very high value entries for variables that participate in the solution and some near zero

entries for variables that converge to their lower bound. In such a case, the matrix AD IrA r

can become ill conditioned and cause numerical errors.

(iii) As active or dormant variables are identified, the size of the problem can be reduced by

removing them. In particular, the removal of dormant variables maintains primal feasibility

and reduces the computation work of every iteration. Also, the removal of primal variables

that converge to zero increases the numerical stability of the calculation.

As a result, there is considerable interest in identifying the active and dormant variables by

heuristic procedures at an intermediate stage of the IPM search. Gay (88), Mehrotra (91-2),

Zhang et al. (91), EI-Barki et al. (91), Levkovitz (91) and others have put forward heuristics

and report encouraging results. These heuristics are based on indicator functions which are

calculated at every iteration. EI-Barki et al. in their survey of indicator functions classifies

thcm in several types namely variables that are used as indicators, primal dual indicators and

Tapia's indicators which are also related to the primal dual indicators. The key result in this

survey is the proof that the convergence rate of the indicator sets to their optimal value is

faster than the convergence rate of the solution. Thus, the solution set can be identified

before the actual solution is reached. From a practical point of view, the need is to find

some criteria that give a sharp separation between the sets of active and dormant variables.

It is clear that the sets defined in Theorem 2.1 do not give such a separation. EI-Barki's

survey and our investigations indicate that using the variable values as indicators suffers from

the same disadvantage: in the NETLIB problem Pilot, for example, some variables that

participate in the solution have very low values; even at a relatively late stage of the

optimization it is difficult to distinguish between them and the variables that are going to

their bounds. In primal only or dual only algorithms, however, the indicators are usually

based on such a criterion (Gay 88).

In primal dual IPM algorithms, both primal and dual solution vectors are computed at each

iteration. This provides an opportunity to compute indicators based on the primal and dual

behaviour throughout the iterative process. Mehrotra (91-2), Tapia, EI-Barki (91) and
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others have proposed the following indicator function:

amxl Ixi--4'
xj

(2.7)k.-

zi

These indicator functions are applied to the primal and dual variables to create the indicator

set in the (k+ 1)" iteration of IPM:

av= (J:6•x)J: /(z)I (2.8)

Mehrotra uses this set ak of (2.8) to define the active variables of (2.6).

The primal dual indicators used by Gay, Lustig and others (Gay 88) are stated as follows:

k

a(XPZ= .• Xi k(2.9)
z.

These indicators are based on the simple observation that when the sequence of solution

points converges to the optimal solution, the indicator for the active variables converges to

infinity while the indicator of a dormant variable converges to zero. This property provides

a sharp separation between the two sets but only in the last few iterations of the algorithm.

For our investigations, we developed a different kind of primal dual indicators. These

indicators can be seen as a combination of those used by Tapia and those used by Lustig.

The indicator function is stated below:

S(zI (2.10)

Where

6X k. 2 x Ad(Z kZ
k ? -k (2.11)

x, +1 Z1 +1

These indicator functions are used in a prediction heuristic incorporated into our primal dual
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predictor corrector solver. The predicted sets of active and dormant variables are used in

cur cross-over procedure whereby the predicted solution variable set is used to fix the initial

basis.

3. Cross over to SSX and basis recovery

In non degenerate LP problems, the optimal solution point set is restricted to a single

extreme point of both primal and dual feasible polyhedrons. In most practical cases,

however, the LP problem is primal or dual degenerate (or both) and the optimal solution

point set describes a face of the feasible polyhedrons. It is well known that the optimal

solution generated by the primal dual IPM algorithm converges to an interior point of this

set (Megiddo 89). In many cases, however, an optimal extreme point solution is required.

This optimal extreme point solution and the corresponding basis provide a powerful

representation which arises in LP and its duality theory. Consider the LP problem of (2.1)

and assume that the constraint matrix A is of full rank. For our purposes it is sufficient to

state that the optimal basis of this LP problem is a submatrix B, BERV such that

(x')r=[(B-'b)ro],x•ER is an optimal solution of the primal problem and y*=(B)-'c, is the

optimal solution for the dual problem. A primal (non degenerate) basic solution requires

exactly m primal variables to be active and their corresponding dual slack variables to be 0.

Compared to optimal SSX solution for a given LP, the IPM solution has more active

variables if the problem is dual degenerate or less if it is primal degenerate. In the

integration of IPM and SSX a basis recovery procedure has to be constructed which applies

to both these cases.

There are essentially three related problems which lie at the heart of the basis recovery

procedure which may be stated as:

(i) given a primal feasible interior point solution 1 , find a superior basic feasible solution

x., such that c rx,-c T,,

(ii) given a set of primal or dual optimal solution values, find Bo,, such that:

x;. = BIbnO and [cr, Br Ar Žc
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(iii) given a set of primal and dual optimal solution values, find B- 1 as in (ii).
opt

We note that if IPM stops at a primal feasible but suboptimal interior point we have to apply

procedure (i); on the other hand, if thi IPM terminates near enough to the opumral SolkMion

then solution procedures for (ii) or (iii) may be applied.

Basis recovery using a primal quantitative approach

The recovery of a superior or an optimum basic solution from a primal feasible non-extreme

point solution is well understood in the context of the SSX algorithm. For instance the

BASIC procedure within MPSX finds a superior extreme point solution and thc

corresponding basis. Mitra and Tamiz (88), Marsten (89), and others set out comparable

pivotal schemes for a primal only approach to this problem. The steps of this algorithm are

summarized below:

Let x" be the primal feasible (or optimal) non-extreme point solution found by the interior

point method. We partition the A matrix into three parts [B, N. S, and the carreponding

variable or column indices into three sets (1,r Is, 1s]. These correspond to basic, ronbasic

variables at their bounds and superbasic variables. Let

X,+;, X;, x,,] then we can express the original LP system of equation as

Ax'=b : BN;+Sx=b (3.1)

we also set

VjEIm: if x 1<e then x,=O (3.2)

and re-express the system (3.2) as:

x5 =B '(b-Nx")-B -sx; (3.3)

Note that since no upper bound is defined Nx;=O.
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To this equation representation of the problem we apply a "reverse simplex" algorithm in

which the number of variables which are nonzero are reduced from IBm I + I's I to jIB I in JIs I

pivotal steps and the corresponding x; variables moved to their bound depending on their

reduced cost coefficients; for a detailed explanation of this procedure see (Mitra 88). This

method was also implemented within the first versions of OBI (Marsten 89-2) and OSL

(Forrest 90). The experimental results, however, were rather disappointing. On average the

basis rwcovery steps took, 15-30% of IPM time and sometimes it exceeded the IPM time.

The afficulty experienced in the basis recovery (SSX) steps can be ascribed to the cases

where thz optimal solution is primal or dual degenerate.

Recently, Bixiy and Saltzman (92) analyzed the above approach and suggested several

extensions. They attribute the slow convergence of primal cross-over algorithm to one of

the two following reasons:

(i) LUt x =(x;,x;,xs) be the partition of the IPM solution to basic, superbasic and non basic

variables. After the initial basis is constructed, a basic solutioniB=B-'(b-Nx;-Sx;)=B- '

is computed. There is no guarantee that this solution is numerically stable and thus the

residual b'-B" can be unacceptably large. Even if this residual is small, the computedi"

can be a bad approximation to the original x 8 .

(il The variables that are superbasic but were not included in the basic solution are fixed to

their bounds. The computed JI, may be highly sensitive to these perturbations.

To over come these difficulties, Bixby and Saltzman propose the following procedures:

(i) Construction of the initial basis

The variables x, such that xpO are sorted in a decreasing order, a variable is considered to

be 0 if x,<10-3. The initial basis is constructed from the first m variables in the list, the rest
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of the variables that are not set to zero are considered as superbasic.

(ii) Singularity tolerance

The LP is scaled such that max,, jal.. I , the standard singularity tolerance r = 10-$ which

gives the minimum of an acceptable pivot entry in the SSX algorithm is set to

r =O-3. Columns with no acceptable pivot value are rejected. If this or the origin,-

selection results in an incomplete basis then non basic slack variables that correspone to

uncovered rows are included in the basic.

(iii) Feasibility check

After the initial basis is constructed using steps (i) and (ii) X'B is computed. If the scaled sum

of infeasibilities is more then 1.0, the basis is rejected and step (ii) is repeated with r =O. .

The basis constructed by this heuristic procedure is used in an algorithm similar to the 3fe

used by Marsten et al. and Mitra et al.

The results reported by Bixby et al. indicate that their heuristic improves the primal basis

recovery algorithm dramatically. In average, the reported cross-over times are 5% of !he

total solution time.

Basis recovery using a primnal dual quantitative approach

Megiddo (91) proved that from theoretical point of view, a cross-over algorithm which uses

both primal and dual information is preferable. This idea is encapsulated in the following

theorems:

Theorem 3.1: If there exists a strongly polynomial time algorithm that finds an optimai

basis, given an optimal solution for either the primal or the dual, then there exists a strongly

polynomial algorithm for the general LP problem.

Theorem 3.2: There exists a strongly polynomial time algorithm that finds an optimal basis.

given optimal solution for both the primal and the dual.
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Megiddo gives a constructive proof of Theorem 3.2 and shows that there is no known

strongly polynomial algorithm to retrieve the optimal basis if we take into consideration only

the primal or the dual optimal interior solution. This explains the importance of problem

tiii) stated above. Megiddo's procedure which takes into account both primal and dual

optimal solutions values is given in algorithm 3.1.

Algorithm 3.1: recovering an optimal primal dual basis

Let (x " y *,z *) be the 1PM optimal solution of the problem stated in (2.1) and assume that

.4 is of full rank (the rows of the matrix A are linearly independent). Our aim is to construct

an optimal basis solution from the optimal interior point solution.

Let Ax. be the part of the constraint matrix which corresponds to the variables that are

active at the solutions : Ax.={aI a, is a column of A and x;>0). Similarly, let Ar. be the

part of the constraint matrix consisting of columns of A which correspond to dual slacks that

are 0 in the solution: Ar.={ajIaj is a column of A and zg=01 (these sets are identical if

the problem is non degenerate).

From duality theory and the complementarity slackness conditions:

z2.*.0,&y)rA, = T
X tl.CX.

1. Construct a minimal size primal solution

Reduce the size of the submatrix Ax. to create a linearly independent matrix by repeating

the following procedure until no reduction is possible:

If Ax. is linearly dependent then there exists a vector q *0 such that A.n ---0 - cr.1 J --0

thus for some scalar t we construct the vector x/ defined by the relation:

xI: x, /It+Olo r a4EAx" Vj=l,..,n such that 3j: x,+tq,-O

0 otherwise

Thse vector x' is still an optimnal solution but with a smaller set of positive indices.
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The result of this procedure is the submatrix A,=(aj:x',>OI whose columns are all linearly

independent.

If IAx,I =m then set B=Ax,, GOTO step 4

2. Add variables according to the dual problem:

While (there is a column in Ar. which is independent of the columns of A1, ) do

add the column to Ax,

(the linear independence of the column can be easily checked by using Gaussian

elimination)

end while

If IAx,I =m then set B=Ax,, GOTO step 4

3. Add more variables by dual range check

Since A is of full rank and JAx,I<m then there must exist at least one column which is

independent of the columns of Ax,. Let a1 be such a column then a, cannot be in the

original Ax. or Ar., hence a,:(y ')rAj<c,. For such a column a. we solve the following

system of equations:

rTA ,=0

&Ta =1•rjl

A solution for such a system exists because the system is linearly independent.

Since every column of Ar. is now a linear combination of columns of AX/, then for every

scalar t we have:(y -t)rA ...CT

We fix:

{ -ck-(Y )rak
to 7 t ITakyTak>c&

y 1=y-tot, Ar,=lakjy'rak=ckI
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The submatrix Ar, contains at least one column which is linearly independent of the columns

of AX1. These columns are added to A., one at a time in the same way as in step 2.

This process is repeated until IA1,I =M, then set B=A,

4. B is the desired primal and dual basis

Throughout the process described in algorithm 3.1 the primal and dual optimality conditions

of the intermediate solutions x',y, ,z' are maintained such that VakfAz, xlk=O. Variants

-f Algorithm 3. 1 were implemented by Forrest (91) in the IBM OSL library and by Lustig

(91-1) in OBI. These implementations proved that, from the practical point of view, this

primal dual procedure is more efficient than the primal only basis recovery procedure.

Basis rmcovery using a primal qualitative approach

We now describe a qualitative method that we have developed for the crossover procedure.

This procedure was especially developed to utilize the prediction of the optimal solution using

active and dormant sets as described in the previous section. Instead of predicting the

optimal solution and performing another IPM iteration to verify it, we use the prediction

inside the SSX algorithm.

Given the original LP problem P we create a related problem P in the following way. In

addition to Is, Im 1. column index sets defined in the primal retrieval procedure we defineR., R.

row index sets corresponding to zero and positive logical respectively. The relationship of

the indicator sets to these sets are given as oa(x)=IUIr 5*(z)=R 5 .

We construct the related problem P as shown in Figure 3.1 by fixing variables in the set 'N

to their respective upper or lower bounds and making the rows in the set R, free rows. We

note that if the IPM prediction is correct then the given optimum solution to P is a feasible

solution to P. The basis recovery procedure is stated in algorithm 3.2:



367

P RI

II I R,

I Rl

Figure 3.1 construction of the restricted problem

Algorthm 3.2

1. Create a starting basis for P using a the simplex CRASH procedure (Forrest 90, NAG

91).

2. Solve P by a SSX algorithm, save the basis B- (P)

3. Reinstate the original problem P

start with B- 1() and apply SSX to optimality.

If the prediction of the optimal basis is slightly wrong (as can happen if IPM is terminated

before an optimal solution is reached) then step 2 is terminated with a 'no feasible solution'

status. The resulting basis, however, is usually near optimal and thus requires a low

number of iterations in step 3 to reach optimality.

4. Results and analysis

Figures 4.1, 4.2 and 4.3 illustrate the behaviour of our primal-dual indicators. Figures 4.1

and 4.2 show the behaviour of primal and dual Tapia's indicators for two dormant variables

(var 3 and var 4) and two active ones (var I and var 2) on the problem Stair. As expected,

in Figure 4.1 the indicators which represent the active variables converge to I while those

which represent the dormant ones converge to 0. Figure 4.2 is the dual mirror image of

figure 4.1. In it, the dual slacks of the active primal variables converge to 0 while the dual

slack variables of the dormant primal demonstrate consistent growth. The convergence is

monotonous only in the last stages of the algorithm and for some problems a sharp separation

between the sets is not always easily derived (especially if some upper bound variables are
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also present). In comparison, the behaviour of the indicators in Figure 4.3 that are based

on equation (4.10) show an earlier as well as stronger separation. Our observations show

that soon after feasibility is reached, many of the active primal variables show a rapid growth

for several iterations. This growth is closely linked to the rapid arrival of IPM to a near-

cptimal solution; then, the growth of the primal variables is followed by a similar reduction

in the value of the dual slack variables and the indicator shows an exponential growth from

iteration to iteration. This growth is reduced when the solution reach optimality.

The behaviour of the primal, dual and our primal dual indicators are tested on four variables

of the preblem Stair as illustrated in Figures 4. 1, 4.2 and 4.3

Problem Stair

1.61
*.1

¶0

1..4

• o o

F11
0.I

0.Q
0.5l

0. 1
0

Figure 4. 1 Primal indicators the problem Stair
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Problem Stair
6111 low o I mr 1.i ,fle

2.4

2.26

1.4

1.2

0.4

1.11

0.6

0.40-: L
S 4 6 9 -00 It 14 'is Is 20 zz 24

Figure 4.2 Dual indicators in the problem Stair

Problem Stair
mWug•wr cr aIrlmlaml Inalmure

22

a VW I + W ¶1 2 ~S 7 a0 21W

Figure 4.3 Primal-dual indicators in the problem Stair

In our identification heuristic, we use a combination of the prima dual indicators and those

of (2. 10) to identify the active and dormant sets. A special array predfict(ncol) holds an

integer value that is proportional to growth in the indicator value. If the value is inicreased

by a sufficient amount for more than one iteration, the corresponding variable is marked as

active. If the value is decreased by the same amount, the corresponding variable is marked

as dormant.
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In Table 4.1' and Table 4.2 we present the results of our identification heuristic in

intermediate stages of the IPMC algorithms for two NETLIB problems. The table shows

the number of active and dormant variables which are identified by the heuristic (the column

marked Forc.) and compare them to those found at optimality. The number of hits and misses

in every iteration is also given.

iterations Active variables Doromant variables Unknown

from

nor. Hit Miss Forc. Hit Mis

" 195 !70 25 -M 236 28, 0

9 192 ;8n 12 '269 247 22 8

""19 I 1 9 92 7 1269 -262 6 2

-98 9, 5 270 266 4 1

-' 1 !99 197 2 269 269 0 1

-3 ! 93 J197 272 272 0 0
S i197 197 o 272 272 0 0

1 297 1I 97 0 1 272 272 0 0

-2 197 197 0 272 272 0 0
j197 197 0 272 272 0 0

IOptitmaty 127 191 2721272 0 0
1 T9ble 4.1 Prediction of the opimal aolution aof in the p em E226.

Iterations Active variables Dorman variables Unknown
trmn
optimality

Fo7. Hit Mis i Forc. Hit Miss

-20 1040 741 299 738 734 4 71

-9 993 743 255 825 825 0 46

-8 880 742 138 932 931 1 37

-7 905 743 162 902 902 0 42

-6 889 742 147 919 918 1 41

-18 742 76 999 998 2 32

-4 771 743 28 1071 1071 0 7

-3 746 743 3 2201 2202 0 2

-
2  

743 743 0 2 1106 1106 0 0

743 743 0 1106 1106 0 0

743 743 0 12106 1106 0 0

To 4.1ticonofike optimal solutionintp emn 25FV47
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The tables indicate that most dormant variables and some active variables can be recognized

almost as soon as feasibility is reached. This property of the algorithm is later used for

basis recovery and for reducing the model size dynamically by removing these dormant

variables.

In Table 4.3 we demonstrate the qualitative approach on the problem OR3 (algorithm 3.2).

Apart from the only SSX run (first row of the table) and cross over from optimality (last row

of the table) the solution set is determined by the indicator heuristic.

The "IPM Iterations" column gives the iteration number at which cross over was mase. Thle

column marked "Basis recovery Pass I" gives the number of SSX iterations on the rest--cie

problem, the column marked "Basis recovery Pass II" gives the number (I SSX iterations

needed to prove the optimality of the solution for the complete problem. We note that the

predictions of the 14 and 16 iterations did not find the exact optimal set but as expected,

they where close enough to the primal basis to cause a considerable reduction in the number

SSX iterations. In Table 4.3 we give the qualitative basis recovery results for some more

NETLIB problems.

Model IPM Time Basis recovery Time Total
Iterations (sec) Time

_______ _____Pass I Pass II

OR3 0 0 1765 354 354

OR3 14 10.5 200' 1480 365 365

OR3 16 12 401 680 216 227

OR3 18 13.5 100 340 135 147

OR3 20 15 180 71 91 105

OR3 22 16.5 240 6 89 104

OR3 24 18 220 13 78 95

Optimal solution not fnin [he restricted po
Table 4.3 quantitative crossover results
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Model Iteration Variable Time Pass I Pass H Time Total

Ganges 26 1223 87 336 379 33.8 120.80

Ganges 30 1223 101.1 405 187 28.6 129.70

25fv47 39 773 214.61 267 206 25 239.61

25fv47 44 770 242 331 124 23.8 265.80

Shipl21 19 736 29 39 159 23 52.00

Shipl2l 26 726 39.78 38 67 18.5 58.28

Cre a 45 977 185 80 2423 224 409.00- Table 4.4 Bsis recov-ery results
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Abstract
In this paper a new algorithm is proposed, based upon the idea of

modeling the objective function of a global optimization problem as a
sample path from a Wiener process. Unlike previous work in this field,
in the proposed model the parameter of the Wiener process is considered
as a random variable whose conditional (posterior) distribution function
is updated on-line. Unfortunately, using a natural conjugate prior dis-
tribution on such a paraiieter, consistency of the Bayesian algorithm is
lost. The authors propose a modified prior distribution which overcomes
this difficulty. Furthermore, stopping criteria for Bayesian algorithms are
discussed.

Introduction

Let us consider the global optimization problem defined as the problem of finding
f* in such a way that

= maxf(x) (1)
-rEK

where K C R" is a compact set and f is a continuous, real-valued function de-
fined over K. Many algorithms have been proposed in the literature for dealing
with the rather frequent situation in which f possesses many local optima. For
a general survey the intersted reader is referred to (T6rn & Zilinskas, 1989).
Among the algorithms which deserve special attention are, in the authors' opin-
ion, those based on stochastic elements: research in this area may be roughly

"This research has been partially supported by "Progetto MURST 40% Metodi di Ottimiz-
zazione per le Decisioni".

t to whom all correspondance should be sent
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categorized in two main streams, namely research based on the idea of modeling
the objective function f as a sample path of a stochastic process and research
based on the introduction of a random element in the algorithm iUself. Algo-
rithms belonging to the former stream have been recently surveyed in (Betr6,
1991), while those belonging to the latter are surveyed in (Schoen, 1991). A
very good account of classical as well as recent results in both areas can be
found in (Zhigljavsky, 1991).

In this paper attention will be restricted to the class of objective functions
defined over a closed interval of the real axis. Such a restriction is, from the
theoretical point of view, admissible in view of the fact that multidimensional
global optimization problems can be transformed into one-dimensional ones e.g.
by means of Peano-mappings (Strongin, 1992). The authors are obviously aware
of the computathonal difficulties inherent to such transformation; however the
analysis of one-dimensional global optimization problems is already sufficiently
complex to be worthwhile, and, in the authors' opinion, it can shed light into
the challenging problem ( 1).

One of the most well-known aud best performing method for one-dimensional
global optimization, known as the Bayesian approach, was introduced in (Mockus,
1975) and extensively reviewed in (Mockus, 1989).

The main idea of the Bayesian approach is that of considering the objective
function f as a sample path of a stochastic process. Following the traditional
scheme of Bayesian analysis a loss function is introduced and the "decision" to
be taken at each iteration of the algorithn, namely the choice of a point X E K
where to evaluate f, is made according to the minimization of the expected loss,
or, in Bayesian terminology, risk.

1 Sequential Bayesian optimization

Let the objective function f be considered as a sample path of a stochastic
process F(x~w); i.e., we assume that there exists an Cd E fQ such that f(z) =
F(c; 5,) V x; a suitable probability space over the sample space 0 is assumed to be
defined. The idea of Bayesian algorithms for problem (1) is that the "decision-
maker" should choose an "'action" a, which, in the present context, corresponds
to choosing a point where to evaluate f, trying to minimize expected value of a
suitably defined "loss function". The reader is referred, for example, to (Berger,
1985) for a detailed account of Bayesian analysis and terminology. Let us assume
that n observations of f have been already performed in correspondance with
the points xi < . < x, and let f,* = miaxi=,n f(xi). A natural form of the
loss function for problem (1) is given by

_(w, a) = max F(y;w) - niax{ F(a;w), f}. (2)
Y

The above loss function introduces a measure of the loss incurred when an
action consisting in the evaluation of the objective function at a E K is taken
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when the objective function f(.) is F(.;w); it is assumed that f has already
been evaluated in n points.

In most of the published papers on this subject it is assumed that a fixed
number of observations, N > 0, can be performed. However it seems more
sensible to assume that the disadvantage of having to evaluate the (presumably)
expensive function f is directly included in the definition of the loss function.
We propose thus the use of the following loss:

-(w,a,n) = maxF(y;w) - max•{F(a;w),J}) + (n + 1)c (3)
y

where c > 0 measures the cost of each function evaluation; here, as before, action
a E K is chosen: having already evaluated f in n points, a further observation
at a gives a total of n + 1 observations, each at cost c.

Let
Zk = (XIf(XI),..., f(X0)

be the information available after the k-th observation, with zo = 0. A sequen-
tial decision is thus defined as a function

d = (r,6)

where

r = ro,•I(z,),..., k(zk),...

6 = 6o,bI(z),. .. , 6k(zk),...

Functions rk map the available information at step k into one of the actions
"stop" and "don't stop"; functions 6 k give the decision on where to choose the
next observation point.

Altough theoretically it is possible to define an optimal sequential decision
rule, it, is practically impossible to identify a closed form expression or even
a computationally manageable optimal rule. It is thus very common practice
to implement a so-called rolling-horizon or k-step look-ahead rule. Given the

practical difficulty of even these decision strategies, one is usually left to the
use of 1-step look-ahead rules, i.e. rules which are optimal in the subset of
decision rules which prescribe stopping not later than the next observation.
The "rolling-horizon" feature of this method arises as, in the implementation, if
the rule calls for stopping then the algorithm terminates, whereas if the rule calls
for one more observation, that observation is taken and a new 1-step look-ahead
rule is implemented.

In the present context the bayes risk of a decision (r,, 6,J) is given by

rE(maxF(y;w) - fn + nc I vz,) if r,, = "stop"
E(maxF(y;w) - max{F(6b,;w),f, ) + (n + l)c I z,) otherwise

(4)
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where E stands for expectation.
A one-step look-ahead rule (Tr*, 6*) has the form:

6* = argminE (axF(y;w,)- max{F(x; w),•} (I + 1)(+ )c z, )

and T• = "stop" if and only if the current loss

E (max F(y;) - i* + ,c I zn

is less than or equal to the predicted one:

E xF(y;w) - max{F(6;w),;*},} + (n+)Iz,, +.)

It is easy to see that the previous optimal decision problem decomposes into
the problem of optimally placing the next observation, which is equivalent to
finding

6* = argmaxE(max{0, F(x;w)- f Z} I zr) (7)

and then deciding to stop computation (and not evaluate f at x,, = if
and only if

E(max{O,F(6*;w) - fi) J z,) < c 8)

Stopping rule (8) gives further insight into the meaning of c which c.--..n be
considered as a treshold for the gain which is expected in performing one nore
observation: if this expected improvement falls below c it is considered :not
wortwhile continuing the sample.

In order to specify a practical algorithm an appropriate probabiiitv iimasure
has to be defined; this is the subject of the next section.

2 Wiener process with unknown parameter

A standard probabilistic model for the objective function f when AK is an intervai
on the real line is the Wiener process. In the following we shall assume that
K = [0, 1]. Although this process possess an undesirable feature, namely almost
evervwhere non differentiability, computational tractability makes it almost the
only feasible choice. We say that a stochastic process F(x; w) is a WViener process
if

"* F(0;w) = fo, a constant;

"* F(x; -) is a random variable with distribution , I'(fo, u-x), where a is a
parameter of the process.

"* F(x; -) has independent, stationary increments.
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In the literature the parameter a is assumed to be known or, in some cases,
estimated by means of an initial sample from f. In this paper the Bayesian
paradigm will be assumed and a will be considered as a random variable which
has to be estimated on-line.

As a consequence of the normality assumption for F(x; .), it is only too
natural to assume as a prior distribution on a a "natural conjugate prior":
definitions and examples of conjugate classes of distributions can be found in any
text on Bayesian statistics. As the observations of a Wiener process are gaussian
random variable whose variance is proportional to the unknown parameter a2,
a natural choice for the prior distribution comes from the observation that, in
an independent normal process {Xi} with known mean p and variance o-2, the
random variable

Sn Z 1 (X, - l)
O,2 0-2

is distributed as a X2 random variable with n degrees of freedom. Inverting the
distribution it is thus possible to define a family of prior probability distribution
functions for a 2 which depend on two parameters, ao representing the initial
degrees of freedom and So (the particular distribution goes under the name of
inverted-gamma function), given by

p(a2;ao, So) = g(a 2; ao, So) ox exp(-So/(2a 2 ))(U2 )(a.+l)/ 2. (9)

It is then possible to show (the detailed proofs of all the original results
in this paper will appear elsewhere) that, given a sample z,, from the Wiener
process F the posterior distribution of a 2 is given by

P(,72 I :;ao,So) = g(a 2 ;a a,S,,) (10)

where

a, - a,-, + I

=. S,,-+ f(1(m t i(x.__-n-a(x I -,,- n --'1 )

,(x z,,-,) = E(F(x;w) I Zn,_)

( fi if X <a X

"- fi" '.-', +fA-1 f -: 1f - < X< ,
if X > X"-1

{ -X ifx<_X 1

a'2 (X:,_) = (-z,_,)(x,-x) if i-I"S..< Xi

X - Xn-1 if X > Xn- 1

Thus the posterior distribution of the parameter of the Wiener process can
be updated sequentially by means of the above formulae.
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3 One-step look-ahead algorithm

The choice of the next observation point is thus reduced to the maximization
of the expected gain

T.(f.) = E(max{O-, F(x;w)- .}] z,) (l1)

= E(E(max{O,F(x;w)- f} z, a2) 1z) (12)

where the outermost expectation is with respect to the conditional distribution

of a 2 given the sample. It is possible to show that, at least when a, is even,
,(gf) can be given in explicit form. Obviously, as this case generalizes the

usual one with or2 a priori known, explicit maximization of the expected gain
"T• is impossible and one has to resort to numerical optimization; however it has

been shown in (Locatelli, 1992) that several criteria can be given for excluding
subsets of [0, 1] from the search of an extremum of T,, and, in many cases,
conditions have been given by which such exclusion is permanent; in other
words it is possible to show that if the expected gain in a certain sub-interval
of [0, 1] falls below a treshold at step n, the Bayesian algorithm will not place
any new observation in that interval before stopping.

For what concerns stopping of the algorithm, the one-step look-ahead stop-
ping rule, once the choice of the new observation point xn+1 has been performed,
is trivially obtained as that rule which calls for stopping as soon as the computed
expected gain falls below c. Thus the proposed modification of the Bayesian ap-
proach permits at no cost. to regulate the sample size dinamically on the bases
of the observations.

The following result has also been proven:
Theorem. If f is a continuous function on (0, 1] satisfying

If(x)-f(y)l<Lx/J I-yl Vx, yE [O, 1] (13)

where L > 0, then the one-step look-ahead Bayestan algorithm will almost surely
stop after a finite number of steps. The stopping time is 0(L 2/c 2).

As a final remark, notice that only existence of L is required for finite stop-
ping; knowledge of the constant L is not necessary.

4 Consistency

Although it has been proven that finite stopping always occur, the question nat-
urally arises of the accuracy of the proposed algorithm. It should be clear that
in looking for finite stopping rules one has to trade accuracy with computational
effort. Nonetheless it seems worthwhile to analyze the asymptotic behaviour of
the algorithm (as c 0- ) in order tu judge its cons,.Atency, i.e. the convergence
of the estimated optimum to the true one.

S- . ,< . .. .. ..i . . .. . .. . . . . . . . .. .. .. . . . .. .. .. . .... .. .... .. .
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Unfortunately it is possible to exhibit counter-examples showing that, for
particular choices of f, the Bayesian algorithm will not produce a dense set
of observation points, thus missing some subset of t0, 1] with positive measure.
This situation is typical for any Bayesian optimization algorithm relying upon
an estimate of the variance parameter a 2 . In practice it is possible to exhibit
functions which are constant in [c, 1] with c > 0 chosen in such a way that no
observation point will ever be placed in (0, c); the estimate of C

2 (any consistent
estimate, lot just the one proposed in this paper) will rapidly converge to 0
and the Bayesian optimizer will become more and more convinced that his/her
function is everywhere constant.

It is however possible, albeit with some technical difficulty, to restore con-
sistency by changing the prior distribution on a 2 in a way which forbids the
estimate to go to 0. In practice one chooses a small treshold c > 0 and redefines
the prior in such a way as to give positive mass only to o-2 E fc, +oo). It is then
again possible to find update formulae similar to those in (10) and to prove
results on finite stopping as well as consistency. The details of this modified
algorithm, as well as the proofs, will appear elsewhere.

Conclusions

It has been shown that it is possible, with only little increase of computational
effort with respect to the traditional Bayesian algorithm, to achieve the following
goals:

"* eliminate the necessity of pre-specifying the value of the parameter a2;

"* introduce a finite stopping criterion by which the sample size has not to
be specified in advance;

"• guarantee consistency.
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Abstract
We consider first a variant of the Analytic Hierarchy Process (AHP) with a one-parametric
class of geometric scales to quantify human comparative judgement, and with a multiplica-
tive structure: logarithmic regression to calculate the impact scores of the alternatives at
the first evaluation level, and a geometric-mean aggregation rule to calculate the final s-
cores at the second level. We demonstrate that the rank order of the impact scores and the
final scores is scale-i ndependent. Moreover, we show that the multiplicative AHP is an ex-
ponential version of the Simple Multi-Attribute Rating Technique (SMART). In fact, the
multiplicative AHP is concerned with ratios of intervals on the dimension of desirability,
whereas SMART analyzes differences of the corresponding orders of magnitude.

1 Introduction

We are concerned with two well-known methods for multi-criteria decision analysis: the
Analytic Hierarchy Process (AHP) and the Simple Multi-Attribute Rating Technique
(SMART). They have primarily been designed to evaluate a finite number of decision al-
ternatives A 1,. • • , A,, under a finite number of conflicting performance criteria C1,.. , CM,
by a single decision maker or by a decision-making body. The AHP (Saaty (1980), see also
Zahedi (1986) and French (1988)) is based upon pairwise comparisons of the alternatives
and the criteria, so that the decision maker's judgement is rather fragmented. SMART
(see von Winterfeldt and Edwards (1985)), a popular off-spring of Multi-Attribute Utility
Theory (MAUT), proposes a direct rating procedure enabling the decision maker to keep
a more holistic view on the decision alternatives.

Throughout the paper we illustrate the relationship between the multiplicative AHP and
SMART. We demonstrate that the multiplicative AHP is concerned with ratios of intervals
on the axis of desirability, whereas SMART uses the differences of the corresponding orders
of magnitude. The idea was suggested by the familiar mode of operation in psycho-physics,
where ratios of light and sound intensities are expressed, not necessarily in their original
magnitudes, but in orders of magnitude on the deci-Bell scale.

2 Criticism on the original AHP

Saaty's original version of the AHP has been criticized for various reasons: (a) for the
fundamental scale to quantify human judgement, (b) because it estimates the impact
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scores of the alternatives by the Perron-Frobenius eigenvector, and (c) because it calcu-
lates the final scores of the alternatives via the arithmetic-mean aggregation rule. The
controversial issues, to be treated in the presentation, are not new. Only a few years ago,
Zahedi (1986) signalized that the criticism on the AHP concentrated on the estimation of
the impact scores, but that no major controversy existed concerning the aggregation step.
Criticism on Saaty's fundamental scale was not mentioned in Zahedi's survey paper, but
Belton (1986) brought forward several arguments against the scale and the aggregation
rule.

More recently, Barzilai et al. (1987,1991) observed that the AHP, since it is essentially
based upon ratio information, would benefit from a conversion into a variant with a multi-
plicative structure. With the geometric row means of the reciprocal pairwise-comparison
matrices to calculate the impact scores, and with a geometric-mean aggregation rule to
calculate the final scores of the alternatives, one could aggregate in two different ways
without affecting the final scores: either by combining first the pairwise-comparison ma-
trices into one matrix from which one obtains the final scores, or by combining the impact
scores under the respective criteria into a vector of final scores. By these multiplicative
operations one avoids rank reversal when copies of alternatives are added to or deleted
from a consistently assessed set of alternatives (a deficiency of the original AHP).

Barzilai et al. (1987, 1991) restricted their analysis to the case where one has exactly one
estimate for each pair of alternatives, under every criterion. Similarly, they did not address
the question of how to scale the decision maker's verbal judgement. These issues have
been our concern since the early eighties. We proposed logarithmic regression in order to
handle missing as well as multiple estimates (the author (1982, 1987, 1990); note that the
regression problem reduces to the calculation of geometric row means when there is exactly
one estimate for each pair of alternatives), and we introduced a one-parametric class of
geometric scales in order to quantify the judgemental statements expressing the opinions
of the decision makers. We could demonstrate that the rank order of the impact scores
is scale-independent. For a detailed analysis we refer the reader to the author's report
(1991). In the presentation, we explain the choice of values for the scale parameter via
psycho-physical arguments, and we show, via a new definition of the criterion weights, that
the rank order of the final scores is also scale-independent in a multiplicative structure.

3 The multiplicative AHP

In summary, we propose.a multiplicative version of the AHP which operates as follows.
In the basic experiment at the first evaluation level, where two alternatives Aj and Ak are
compared under the criterion Ci, we collect the preference information (indifference, weak,
strict, strong, or very strong preference for one of the two), and we convert the verbal
statement of the decision maker (the selected gradation of his comparative judgement)
into a numerical value on a geometric scale, that is, on a discrete scale with echelons
constituting a series with geometric progression. Next, we use logarithmic regression
to calculate the single-criterion impact scores Ui(Aj),j = 1, .. , n, approximating the
subjective values of the alternatives under criterion C.. The impact scores are not unique.
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They have a multiplicative degree of freedom, and they can accordingly be normalized in
such a way that they sum up to unity.

The basic experiment at the second evaluation level, where two criteria are mutually com-
pared, is somewhat more complicated. We suggest the decision maker to consider two real
or imaginary alternatives with-he property that his preference for one of them under the
first criterion equals his preference for the other alternative under the second criterion.
Next, we ask him to state whether he is indifferent between the two alternatives under
the two criteria simultaneously, or whether one of the two criteria gives a decisive (weak,
strict, strong, or very strong) preference for one of the two alternatives. Thereafter, the
judgemental statements are converted into numerical values on a particular geometric
scale. Logarithmic regression yields normalized weights U7(Ci),i = 1,..., m, for the re-
spective criteria. Finally, there is an aggregation step generating the final, multi-criteria
scores 7(Ai) via the geometric-mean aggregation rule

77l

f(A1) = a fl(Uj(Aj))F,
i=1

where Z; simply denotes the weight W(Ci), and a the normalization factor to guarantee
that the final scores sum up to unity. By these quantities, the alternatives are unambigu-
ously ranked in a subjective order of preference when we operate with geometric scales.
Moreover, the ratio of any two final scores does not depend on the physical or monetary u-
nits whereby the performance of the alternatives under the respective criteria is originally
measured.

In the multiplicative AHP, the gradations of comparative judgement are put on a scale
with geometric progression. Let us briefly explain the underlying reasons. We assume
that the subjective weighing of the alternatives under a particular criterion is carried out
in a given context represented by an interval on the corresponding axis or dimension.
This interval is partitioned into subintervals which are felt to be of the same order of
magnitude. Hence, the echelons demarcating the subintervals constitute a sequence with
geometric progression; the property is well-known in psycho-physics, see Stevens (1957).
Marks (1974), Michon, Eykman and de Klerk (1978), Roberts (1979), and Zwicker (1982).
Finally, we take ratios of echelons to represent ratios of subjective values and we let them
correspond with the gradations of comparative judgement. This enables us to assign
numerical values to the gradations. Thus, we set

riA = exp('Ybk)

where 6,k is an integer-valued index designating the gradation of the decision maker's
judgement as follows:
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-8 very strong preference for Ak versus Aj,
-6 strong preference for Ak versus Aj,
-4 strict (definite) preference for Ak versus Aj,
-2 weak (mild, moderate) preference for Ak versus Aj,
0 indifference between Aj and Ak,

+2 weak (mild, moderate) prefereiice for A, versus Ak,
+4 strict (definite) preference for Ai versus Ak,
+6 strong preference for Aj versus Ak,
+8 very strong preference for Aj versus Ak.

Intermediate, integer values of 6jk designate hesitations between two adjacent gradations.
The positive parameter -y is the scale parameter which characterizes the scale, and exp(y)
is the progression factor.

4 Relationship with SMART

In psycho-physical measurement, the ratios of audible sound and visible light intensities
are usually recorded as differences on the deci-Bell scale. This means that not the ratio

magnitudes themselves are considered, but their orders of magnitude. The observation
suggested us to assume that a difference of grades in SMART represents tht order of
magnitude of a ratio of subjective values in the multiplicative AHP. In doing so, we obtain
a simple straightforward relationship between the two multi-criteria methods, enabling us

to carry out a cross-validation of the results. Both methods are now incorporated in the
REMBRANDT system of L. Rog (Delft University of Technology) for Ratio Estimation
in Magnitudes or deci-Bells to Rate Alternatives which are Non-DominaTed. Considerilig
two alternatives Aj and Ak under a given criterion, witn the respcctive grades gi and gk
assigned to them, we take the quantity

rik = exp(-y(gi - g9))

to represent the gradation of comparative judgement (normally, we use the grades 4,6,8,10
to designate poor, fair, good, and excellent performance, the symbol 7 stands for the scale
parameter). Hence, the grades assigned to the alternatives under the respective criteria
can immediately be employed in the multiplicative AHP. The user can even work with
the multiplicative AHP under some of the criteria, and with SMART under the remaining
ones.

In the psycho-physical literature, the issue of how human beings judge the relationship
between two stimuli was brought up a few decades ago. Torgerson (1961) observed that
human beings estimate differences of subjective values when they are requested to express
their judgement on a category scale with arithmetic progression, and they estimate ratios
of subjective values when the proposed scale is geometric. Thus, they estimate the rela-
tionship as it is required in the experiment. Which of the two interpretations is correct,
cannot empirically be decided because they are alternative ways of saying the same thing.

Torgerson's observation is easy to understand if we assume that the subjective stimulus
values are not identically used in the two types of experiments. In the ratio experiment
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with a geometric scale, human beings judge the ratio of two stimulus values. In the
difference experiment with an arithmetic scale, they do not judge the ratio itself but its
order of magnitude, which is essentially a logarithm of the ratio. Thus, ratio judgement
is exponentially related to difference judgement (this was confirmed by psycho-physical
research in the seventies and eighties, see Veit (1978) and Birnbaum (1982)). Moreover,
the multiplicative AHP and SMART do the same thing albeit in alternative ways, and
they are exponentially related.

5 Choice of scale-parameter values

We sketch human behaviour in various areas in order to explain the numerical values
assigned to the scale parameter and henceforth to verbal statements such as weak, strict,
strong, or very strong preference for Aj with respect to Ak. To our knowledge, this ap-
proach to explain the numerical values is new. First, we provide a heuristic introduction
to illustrate the transition from car prices to the subjective judgements whereby cars are
referred to as "cheap", "somewhat more expensive", "more expensive", or "much more
expensive". In fact, we subdivide a given price range into a number of price categories
(intervals) which are felt to be of the same order of magnitude, and we use the correspond-
ing grid points (levels) to establish ratios of price increments (echelons) expressing what
we mean by "somewhat more", "more", and "much more". Next, we show that human
judgement leads in many unrelated areas (progression of historical periods and planning
horizons, classification of nations according to size, perception of light and sound intensi-
ties) to the same categorization of intervals: there are roughly four major categories, the
echelons constitute a sequence with geometric progression, and the progression factor is
roughly 4.

We use these results in the REMBRANDT system to introduce a natural geometric scale
for the quantification of verbal, comparative judgement: a scale with major as well as
threshold echelons, and the progression factor 2. The scale parameter -Y is accordingly
set to the value In 2. Sensitivity analysis with a short and a long geometric scale in the
neighbourhood of the natural scale usually shows that the impact scores are rather stable.
This is illustrated by the numerical example at the end of the presentation.

Lastly, we show that the relative importance of the criteria can also be established via
the pairwise comparison of two alternatives. By this new approach, we found only one
geometric scale to quantify the relative importance: a scale with major and threshold
echelons, and with progression factor V2-, so that the scale parameter - is set to In vf-.
Pairwise comparisons at the first and the second evaluation level will accordingly be rather
similar, despite the conceptual differences. Moreover, by the uniqueness of the scale at
the second level we can show that the rank order of the final scores does not depend on
the geometric scales employed at the first level.



387

6 Epilogue

The AHP was intended to structure a decision process by the introduction of a hierarchy
of evaluation levels, much higher than the two-level model considered in the present paper.
Given the difficulties encountered in the aggregation step, a hierarchical structure with
more than two levels should be thordughly studied before it is launched in a practical
environment. So far, we only formalized the concept of the relative importance of the
criteria, via a model which is based on the pairwise comparison of alternatives. In a
hierarchy of evaluation levels, we would run up against the relative importance of sub-
criteria, sub-sub-criteria etc., concepts which are still undefined. The original version of
the AHP disregards these questions, and constructs multi-level hierarchies as audaciously
as it carries out the subsequent analysis. Such a top-down approach (see als Keeney and
Raiffa (1976)) is in sharp contrast with the cautious bottom-up approach followed by
the French school in multi-criteria analysis (Roy (1985), Schirlig (1985), Vincke (1989)).
Cross-fertilization between the French and the American school in multi-criteria analysis
has been meagre, however. Well-known Anglo-Saxon textbooks (von Winterfeldt and
Edwards (1986), French (1988)) ignore the French school. None of the five textbooks
just mentioned gives a thorough description of the AHP, by its world-wide popularity
a prominent method in the American school. The relationship between the AHP and
SMART, established by the author (1991), may enhance the power of the two methods,
provided that they are jointly embedded in a flexible decision-support system.
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INTRODUCTION
Vehicle routing problems with time windows have interested

researchers and practitioners for some years. Time window

constraints occur in for example newspaper delivery, delivery of

fresh and frozen food, dial-a-ride services, and school bus

systems. In those problems one or several time windows are

connected to each customer imposing earliest and latest allowable
start for delivery at the customer. Usually time windows are also

connected to the depot.

The time windows may be hard meaning that a solution is consi-

dered to be infeasible if the time window constraints are not

met. If the time windows are soft is is allowed to deliver to the

customer outside the time window. However a penalty is then
imposed. In this paper problems with one hard time window per

customer will be considered.

Surveys on the literature on VRPTW are given in Solomon and
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Desrosiers (9) and in Desrochers, Lenstra, Savelsbergh and Soumis

(3). The exact approaches that the author is aware of can be

divided in the following four classes:

1. Approaches based on dynamic programming. This

line of research has been followed by Kolen,

Rinnooy Kan and Trienekens (8) and can be re-

garded as an extension of the Christofides,

Mingozzi and Toth (1) state space relaxation

method. Problems with up to 14 customers have

been solved to optimality.

2. Approaches based on column generation and set

partitioning. In this class Desrochers, Desro-

siers and Solomon (4) recently presented an

exact method with the capability of solving

100-customer problems. The algorithm is based

on a combination of LP relaxed set covering

and column generation.

3. Lagrangean relaxation based methods. Madsen

et al. (6,7) have applied various Lagrangean

relaxation schemes to the VRPTW in order to

produce lower bounds. They are currently ca-
pable of solving 105-customer problems to op-

timality using a combination of Lagrangean re-

laxation and Branch and bound.

4. An extension of Fisher's (5) exact algorithm

for the classical vehicle routing problem to

the case with time window constraints. The me-

thod is based on a K-Tree relaxation. Problems

with up to 100 customers have been solved to

optimality.

In this paper an exact solution method to the vehicle routing
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problem with time windows (VRPTW) will be presented. The method

is from class 3 and is based on a special version of Lagrangean

relaxation in which variables are splitted into multiple copies.

The purpose is to form a problem that can be separated into a

number of subproblems with known usable structures.

The VRPTW is split into two types of subproblems. A semiassign-

ment problem and a series of shortest path problems with time

windows, capacity constraints, and thee possibility of containing

negative cycles. The multiplier updating in the coordinating

problem is done by subgradient optimization. Branch and bound is

used to close the duality gap.

PROBLEM FORMULATION

The problem can be defined by the following parameters:

m = number of vehicles

n = number of customers, index 0 denotes the depot

Q, = capacity of vehicle k

qi = demand of customer i

ci = cost of travel from customer i to j
tii = time for travel from customer i to j

s, = service time at customer i

e, = earliest time allowed for starting de-

livery at customer i

ui = latest time allowed for starting deli-

very at customer i

T = a scalar than the travel time of any feasible route

We are required to assign each customer to a vehicle and to

sequence the set of customers assigned to each vehicle so as to

minimize cost subject to vehicle capacity constraints and the

requirement that the time to begin delivery at customers lies in

the time interval prescribed. The decision variables are:

xiik = 1 if vehicle k travels directly from customer i to
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customer j; 0 otherwise

yiI= 1 if customer i is visited by vehicle k; 0 otherwise
t = the time to begin delivery at customer i

tetk = departure time of vehicle k from the depot

t0,k = arrival time of vehicle k at the depot

In words the problem can now be formulated in the following way:

1. Minimize the total travel costs

2. If route k visits a point it has to leave the point again

3. Each route originates and terminates at the depot

4. The time to begin delivery at the customer shall be
within the limits of the time window. The same ap-

plies for the depot.

5. If a vehicle travels directly from i to j then t.

should be compatible to t,.
6. Each route's demand is within the capacity limit of

the vehicle serving the route.

7. Each customer is visited exactly once.

If the connection between x,,, and y,, is relaxed the problem is

for example decoupled in a semiassignment problem (containing the
y,1 's) and m shortest path problems with time windows and capacity

constraints (SPTWCC) (containing x,,,, t,, tet, and tod) The

semiassignment problem is easy to solve by inspection. The SPTWCC

is a difficult and time consuming problem to solve. It is done by
generalizing Desrochers and Soumis' Generalized Permanent

Labeling Algorithm (2) by extending the three labels by a fourth
one. The solution method is based on dynamic programming. The

solution of SPTWCC may contain negative cycles limited by the

time windows. The coordinating problem arising from the relaxa-

tion is solved iteratively by subgradient optimization. Due to

the integrality of x and y there may be a gap so that only a

lower bound for the VRPTW is obtained. If a gap is occuring

branch and bound is used by fixing a y to one or zero. Then the

subproblems are solved again.
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COMPUTATIONAL RESULTS

The 100-point test problems developed by Solomon (8) were used as

benchmark problems. Furthermore a 31-point problem (a reduced

version of a Solomon problem) and a 105-point problem (a

combination of two Solomon problems) were used. Also subsets of

the Solomon problems consisting of 25 and 50 points were used.

We solved one 105 point problem, 3 100 point problems, 10 50

point problems, one 31 point problem, and 22 25 point problems to

optimality. The clustered problems were the easiest to solve,

while random problems and mixed random and clustered problems

were more diffucult. If the time windows were too wide the SPTWCC

algorithm failed. This algorithm has a complexity depending on

the square of the vehicle capacity and the square of the sum o-

the time window widths. The column generation algorithm mentioned

under class 2 seems at present to be more effective. However

there are some of the testproblems which can only be solved by

the column generation algorithm, and some which can only be

solved by the Lagrangean algorithm, and some which can not be

solved at all. Therefore more research is needed within this

subject area.
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1.The Quadratic assignment problem

The QAP arises in facilities location and layout problems when for exemple, n facilities

are to be assigned to n sites and when the interactions between the facilities depend upon

their location. It can be formulated as follows, if F=(fij) is the matrix of flow between

facilities i and j. D=(dkj) the matrix of distances between locations k and I:

find a permutation p of the set N = ( 1. 2....,n

which minimizes the global cost function.

min Cost (p) = Y fij dp(i)p(j)
j J

The QAP, known to be NP-complete in complexity, has shown itself to be a very

difficult problem computationally.We will show that only problems of moderate size

(n < 20) can be solved exactly.

2.New exact algorithms

There exists two approaches to solve exactly the QAP. The first one which consits to

reformulate the problem as a linear mixed integer program and to solve it by cutting plane

methods, has not been very successful in the past. It manages to solve exactly only

problems of s&ze up to eight (Kaufman and Broeckx[ 18]. Balas and Mazzola[2], Bazara

and Sherali[3]). The second one is based upon the concept of Branch and Bound (B&B)

enumeration.

This approach yields better results so we will present the last recent B&B algorithms.

.. .. .. .. ..
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2.1.Lower bounds

To solve exactly QAPs the computation of the lower bound represents one of the main

difficulties. Either the bound is too loose and the number of B&B nodes becomes too

high, either the computationalktime to bound one node is prohibitive.
We will show that recent lower bounds based upon:

- eigenvalue approach (introduced by Finke.developped by Rendl [ 301)
- equivalent reformulations of the problem (Carraresi and Maluceli [11.12])

-reduction approach (introduced by Burkard [9] and Roucairol[31.32J.
developped recently by Pardalosf 141).

improve of course, the results obtained with the oldest and commonly used bound, the

Gilmore-Lawler bound[ 17, 201 which is based on the notion of ranked product.
But, this improvement remains low, and the average relative error (in comparison with
the best solution) computed at a node of the B&B tree is quite important and decreases

slowly when considered at a node of higher level.

a Ameliorative Rate = (New bound - GLB) / (Best Value -GLB)

Bounds : Finke.Bufk.,Rendl Cahrue~s.Malucelli Paralos

Complexity o(n3) o(kM5) o(n3) o(n 6 )

Size

5 0 0 +100
6 ,300 0 +32
7 -63 +27
8 .43 +7 +12

12 +2 +2 +11
15 +14 +5 +12
20 +41 +2 +8

Tablel. Amelkiative rates of oia botnds in mnqiarsm with GLB

Until now, it is very difficult to measure the effectiveness of these lower bound improvements in a
B&B algorithm; for most of them the results have been announced in a forthcoming paper...

2.2.Branching scheme and reduction tests

As it is very difficult to obtain efficiently good lower bounds, an other approach consists to still use

GLB bound but to concentrate the effort on an other way to reduce enumeration. Thus, we have
proposed [231 a new exact algorithm which has been able to solve, for the first time exactly,
problems of size up to twenty in quite a reasonable time. The idea is to define a new branching

"-. . • :,.,' •
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scheme together with appropriate branching rules and reduction tests. We will first describe one of

the reduction test: the symmetry test.

We use symmetric properties of the real word application, like symmetries in the implementation

sites. On Nugent's problems (27]. for instance, the sites are on a grid and the distances are

rectangular ones. Therefore, symmetrical equivalent solutions go by group of four and will have the

same cost.

Figuret.

Our B&B method will not create, study and bound equivalent nodes with symmetrical solutions in

different branches of the tree. In order to test quickly and efficiently the property of symmetry

between two sites, we will give the following definition:

Two sites i and j are symmetrically equivalent if

I.i and j belong to the same equivalence class:

their vector of distances with other available sites,where the components are ranked

increasingly are equal,

2.their vector of repartition in the different equivalence classes of all available sites being at a

distance d are equal.

This test is easily computed and will produce an important decrease of the size of the B&B to search.

As we will show further, heuristics are able to provide good solutions (with a cost close to the value

of the optimal solution). Based upon theses remarks, our B&B algorithm uses a depth first search

strategy to examine the nodes which probably belong to the critical tree (nodes whose evaluation is

lower than the value of the optimal solution). It also uses at a B&B node a reduction test based upon

the search gap (the difference between the value of the best known solution and the value of the

lower bound of solutions belonging to this node): each assignment of a facility to a site which has a

cost at least greater than the gap is forbidden.

The branching scheme is polytomic: the facilty with the higher number of forbidden assignments is

placed on all available sites..

2.3.Results of sequential and parallel B&B algorithms

Firstly, we present the results obtained by the fastest sequential B&B codes available: Burkard and

Derigs (9), Pardalos [14], Mautor and Roucairol[23].

The test data used are a classical benchmark for QAP. the first ones as the second, assign facilities on

a grid. As the distance between two adjacent sites is equal to one, these problems have a very special

structure and are not representative of a general QAP (as pointed out at the QAP's day organized in
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Bologne, september 92). But. waiting a QAP test problems library. it is the only present way to
compare results. Our algorithm is the fastest and obtains the best results even on problems on which

symmetries cannot be pointed out (Nugent 7. Elshafei 19).

The optimality of solution for famous problem of size less than 20 (size 19-Elshafei (15].. Size 20-

Armour and Buffa !].) is proved.-

Problem Nugent Nugent Nugem NugeM Ekhaf-ei Amosw

Size 8 12 15 16 19 20

Sites plant Grid Grid Grid Squar - Grid

4" 2 4"3 53 4"4 5*4

Best value 214 578 1150 1550 17.212.548 110.030

ALGORITHMS

Maul.. Rouc.

Cray 2 0.04 3.4 121 969 1.4 1189

Burkard/Cyber 76 0.26 46.7 2947

BsukanV/Cray 2 0.11 24.2 1290 NEVER

Pardalos / IBM 0.29 .74.1 2005

3090
PROVED

The recent developpement both of commercially available multiprocessors and of theoritical analysis

of parallelization of B&B algorithms suggested that such parallel algorithms may be a fruitful area of

investigation for QAP.

Only few experiments have been made: two by our team in 87 (Roucairol [33). and 92 Mans,

Mautor.Roucairol (22]), one by Pardalos in 89[14]. They consist to parallelize on synchronous

multiprocessors machine a B&B algorithm using GLB lower bound. Our last proposition is of

course, the parallelization of the new B&B algorithm presented in the previous section [23). From

the point of view of parallelism, these B&B algorithms differ by the way they allocate tasks to the
different processors.

In Roucairol's first algorithm. a global heap is used to memorize the B&B nodes to be explored by

the processors. A task consists to explore a node (creation and evaluation of successor node). each
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processor will require an access to the shared data structure to obtain such a node or to insert new
generated nodes. In order to limit global accesses. Crouse and Pardalos (14]. build initialy several
heaps (initiated with one node) in the shared memory so that each processor selects one and can fully
explored it locally Since the heaps are smaller the maximum time that a processor could be idle

(waiting for a task) is smaller.
Our parallelization uses a different way to distribute the work to processors through the notion of

feeding tree.

The feeding tree is the uppenr part of the B&B tree developped until depth (or level ) i; the leaves of

the feeding tree are the roots of the subtrees allocated to the processors, the tree stumps.
"The first free processor initializes the left part of the feeding tree: the leftest node at the chosen depth i

is generated by successives branching.
Only informations about the path from the root to the last allocated nodes (facilities assigned to reach

this depth and set of the remaining available locations) have to be kept in the global memory.

Each idle processor will access to this shared structure, completes the exploration of a B&B subtree
which has. as root, the feeding tree stumps, and a maximal height of (n-i).

F""~ TM. 1M

Differents results obtained are resumed in the tables below.

Algorithm Machine # Nugent Nugent Nugent Elshafei Scriabin-Vergin
procs siz 12 size 15 size 16 size 19 size 20

Optimal

solution 578 1150 1550 17,212,548 110,030

Burkard Cray 2 1 24 1290 not proved not proved not proved
Pardalos IBM 3090 1 34 2005 not proved not proved not proved
Pardalos IBM 3090 4 10 out of space not proved not proved not proved

Mans and al. Cray 2 1 2.68 109 969 1.04 1189
Mans and al. Cray 2 4 0.99 28 436 0.68 560
Maws and al. Cray YMP I not tested 62 not tested not tested not tested
Mans and a&. Cray YMP 6 not tested 11 not tested not tested not tested

Table 1: Comparison of Running Times (in Seconds).
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For our parallel algorithm, the parameter i. called the shared level, involved in the definition of the

feeding tree, allows to tune granularity and load balancing between tasks.

3.New heuristics
Of course, heuristics have been introduced to solve larger problems than those solvable by exact

approaches. The average results of the earliest heuristic solution methods:
-construction methods ( they reach iteratively by locating one or mome facilities at each step a

complete assignment).
- approximate exact methods ( they reduce B&B search to obtain only good solutions).

- exchange methods (they improve the cost of a complete assignment by intmehanging the
locations of several facilities).

were rather good but on some instances, their results could be very bad. Thus, the most recent
approximate methods use sophisticated meta-heuristics like:

- simulated annealing (Burkard and Rendl [ 10J., Lutton and Bonomi [211., Wilbem and Ward

[371.)
- tabu search (Skorin-Kapov 1341., Taillard [351.).
- evolution strategy (genetic algorithms Brown et al.(51.. Mulhenbein (241.. ant system.

neural networks...)

We must say that the best solutions is always found by these algorithms on classical benchmark of
test problems for size n less than twenty.
As previously argued. these problems have a very special structure; a lot of optimal or near optimal

solutions exist. It has been pointed out that any approximate method which is able to focus
sometimes around the current best solution and explore new region, could perform very well.
We will briefly report some first experiments we made, in the context of QAP, with massively
parallel algorithms implemented on the Connection machine CM-2.
This results are now encouraging but not yet comparable with other results from literature. Mainly
because until now we implemented a sketch of Tabu search which does not contains all the
refinements. We will just indicate here the main characteristics of this approach.
Our idea was to use more than n2 processors when n is the size of the QAP problem. So. two tasks
will run in parallel: the first one follows an intensification strategy whereas the second performs a
diversification phase. They will synchronize just to exchange an improved solution before a new
iteration.

4.Conclusion

Assinment problem with quadratic objective function remains very hard to solve. Even if we have
proved that good branching scheme and branching rules drastically reduce the number of nodes of
the search tree, a sharp lower bound is still needed to construct efficient B&B and thus, to solve
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exactly the QAP. Meta-heuristics seems to give very good results but a QAP library of new test

problems must be constructed to measure correctly their effectiveness.
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EXTENDED ABSTRACT

1. Introduction

Numerically difficult linear programming (LP) problems have always been a
challenge for developers of simplex based LP codes. Considerable effort has been
spent on improving the numerical behavior and the robustness of such systems.
Early it became clear that the additive floating-point arithmetic operations (addi-
tion, multiplication) are the sources of the problems, since their relative error can
be any big in the framework of the finite and normalized number representation
of floating-point numbers. The approach to overcome the difficulties came from
two directions. The first one tried to analyze and modify the way these opera-
tions are performed (c.f. tOH68], [BGHR77], [Mar89I). The second one worked
out numerical procedures that posses proven better numerical characteristics. In
this respect a very important step was the introduction of the LU factorization of
the inverse of the basis. Several variants of it have been developed with different
pivot selection strategies (c.f. [BGHR77], [SS90]).

2. Additive operations in the simplex method

Additive operations in the simplex method occur during FTRAN and BTRAN
([OH68]) type operations. This is true for the inversion/factorization, as well. In
FTRAN, the operation is of a = b+c type, while in BTRAN the typical operation is
the inner product of two vectors where a number of additions take place. Numerical
problems may cause either the creation of a small number (white noise) in place
of a zero (type-1 error), or creation of a zero in place of some significant value
(type-2 error).

A simplified example for a type-1 error can be a computation like a = 1 -3 *b,
where a was computed earlier as b = 1/3. Here a will not necessarily be zero. In
subsequent transformations this white noise can grow beyond the magnitude of
the pivot tolerance and can cause serious problems.

It can be equally problematic if an algebraic nonzero element appears to be
zero (type-2 error). This always happens if the relation of b and c is such that
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Ible. > Ic, where e. is the relative accuracy of the number representation, and
a = (b+c)-bis to be computed. Here, we will get a = 0 instead ofa = c.
Type-2 error is a consequence of the lack of associativity of floating point additive
operations.

To reduce the probability of the occurence of type-1 errors, a remarkable
step was made by ORCHAR6-HAYS [0H681 who introduced the relative tolerance
(Crel > 0, small) for additive operations within the simplex method. Verbally,
its use can be described as follows. If there are too many significant digits lost
during an additive operation, or in other words, the magnitude of the result of an
additive operation with two operands is much smaller (crel times less) than the
larger magnitude of the operands then the result is set to zero.

More formally, the algebraic expression a = b + c is numerically evaluated so
that if lalIja i < Erel, (2.1)maxilbl, Icl}I

then a = 0 is set. Clearly, the choice of 6,r• is critical. Typical values for eeh, in
the case of double precision (8-byte) real numbers, are between 10-12 and 10'0.
If a high level programming language (Fortran, C) is used, checking (2.1) is costly,
because of the division or the equivalent multiplication. At the same time, its use
in FTRAN is unavoidable unless some other technique is applied.

Benichou et al. ([BGHR771) selected an alternative method in FTRAN. They
set an a• value in a transformed a vector to zero if Iail <•cu with an appropriate
e, where u is the absolute value of the element with largest magnitude created
during the a = B- a operation.

The main purpose of the above techniques is to help distinguish between white
noise and zero to avoid the selection of a zero pivot in the transformed vector a.

During BTRAN, inner products of vectors are computed. Inner products are
well known for their bad numerical characteristics. Their computation requires an
accumulator collecting the component wise products. This computation is very
much prone to type-2 error. Using (2.1) cannot prevent this. Among several
possibilities, a relatively simple idea proved to be quite efficient. Namely, an inner
product s = p'a can be computed in such a way that the negative and positive
terms are accumulated separately and added together at the and, thus giving
chance to type-2 error only once per inner product:

piai = E piai+ E piai. (2.2)
i Piai>O piai<O

Clearly, the above and some other techniques that do not go beyond the tra-
ditional number representation and operations will be never be able to guarantee
the exact outcome of the critical operations in the simplex method.
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3. An accurate floating-point arithmetic

The idea of (2.2) can be refined. If we divide the possible range of the ptai
values into N consecutive intervals (buckets) defined by points to, t,... , tN then
the inner product can be computed in the following way:

i t0<p5tai<ti t9 Piad<t2 tN_1 _piGai:tN

bucket1 broket 2  bucketN

Here, the choice of to,.t,1 ... , tN can control the generation and propagation
of error. Addition of values falling into the same bucket will have smaller error.
Addition of the contents of the buckets must be made in increasing bucket order to
help reduce problems due to the lack of associativity. The implementation of this
idea requires N accumulators and additional logic, while it still does not guarantee
full accuracy in all cases.

To restore associativity, we propose a further refinement of (3.1). Now we
assume that the exponents of the terms, intermediate, and final results on the left
hand side of (3.1) taken in any order fall into the [ej, e.] interval. In such a case
one single super register will be able to accumulate the sum of the terms with full
accuracy if it is large enough.

The idea of our super register (SR) can be sketched as follows. The length
L of SR is defined in units of 4 Bytes. One unit is reserved for overflow. L is
a parameter that can be assigned different values in advance depending on the
estimated range of the values. SR is divided into the following parts:

4 Bytes 2(L-1) Bytes 2(L-1) Bytes

overflow Integer bits Binary point Fractional bits
area

FIG. 1. The Super Register

SR has been designed to accumulate inner products. Multiplication is per-
formed by the numeric coprocessor and the result is added to SR. For the case
when SR turns out to be too small, a 10-byte long register (ER, not shown in
Fig. 1.) is added to it. If the value to be added to SR falls outside the range of
SR, ER will be used. Of course, in such a case the accuracy will be reduced to
that of the traditional representation.

Clearly, the maintenance and operations with SR practically can not be
achieved in a high level language. Therefore, we decided to use 386/486 based
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PCs as target machines and assembly language. We defined three operations with
SR: (1) aclear to clear SR, (2) aadd(a,b) to add the product of a and b to SR,
and (3) aread(c) to retrieve the contents of SR and store it in c as an 8-Byte
double precision number. These operations can be activated by subroutine calls
from a Fortran program. Details of implementation are omitted here.

At the beginning we had to answer the very important question: Will the
operations be fast enough to make the whole idea workable? To answer it, we
made test runs on a 486/33 Mhz (256 K on-board Cache) PC with L = 16 to
compare the new operations with the corresponding traditional ones using some
accuracy control technique. This value of L resulted in a SR with exponent range
of - [-76,761, and with a resolution of 10-' throughout the whole range. The
following table shows execution times in micro seconds. For the new operations
the overhead of subroutine calls is included, but we also give timing for subroutine
calls with 0, 1, and 2 parameters.

Operation Time

aclear 3.90
aadd 5.43
aread 8.79
call-0 2.75
call-1 2.74
call-2 2.75
(2.1) 7.03
(2.2) 4.17

The above values were obtained as averages of 106 attempts. Here, call-0,
call-i, and call-2 mean the overhead of subroutine calls with 0, 1, 2 parameters,
respectively.

In another series of experiments we computed 1,000 times inner product
(s = p'a) of two vectors with 1,000 nonzero elements each. The next table gives
average times (in microseconds) of one s = p'a inner product.

Method Time

(2.1) 7250
(2.2) 3410
SR 6540

The conclusion of these figures is that the use of the super register will not
necessarily slow down the computations in the simplex method, especially if the
computer is equipped with on-board cache memory.
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4. Accurate arithmetic in the simplex method

Though the size of one super register is negligible, the memory requirement
of vectors of super registers can be prohibitivly large. Therefore, we attempted
to use one single super register throughout the simplex method and carry out all
the critical floating point operations with this register. This idea entails that the
operations are to be reorganized to become inner products, when possible.

In the case of the LU form of the basis (both L and U are stored colum
wise) the critical operations are inversion (factorization), BTRAN, and FTRAN.
In addition to them, after inversion and before recomputing the basic solution the
right-hand-side is to be adjusted to account for nonbasic variables at upper bound
and for super basic variables:

b -Ejaiu,, (4.1)
jE;

where b is the original right-hand-side vector, a, is column vector of variable x), uj
is its current nonbasic value, and J is the index set of nonzero nonbasic variables.
This operation can also be a source of numerical problems.

In BTRAN the operations are originally inner produts, therefore nothing is
to be reorganized.

Regarding the nature of operations, the LU factorization and FTRAN are
similar, namely, they both require FTRANs.

After factorization the basis is written as B = LU, with B-` = U--L'. The
factorization itself can be carried out using one SR with heavy logic but without
any compromise. The details of it are omitted here.

During simplex iterations the situation is a bit more complicated. If k ba-
sis changes have been made after factorization then Bk = Ek ... ElU-'L-,
where Ei is an elementary transformation matrix. When this formation is used
for FTRAN to compute a = B-'a = Ek ... EU-'L-'a the transformation with
L-1 and U` can be performed after one another with the SR using a dynamxc
linked list (DLL). For the transformation with Ek ... El, we have two options: (1)
this operation is carried out in some traditional way, e.g. (2.1), (2) at the expense
of some additional administration and operations the use of SR can be extended
to this case.

The additional complications require additional memory, since DLL needs
integer arrays of size m (the number of constraints in the LP problem) which can
be too much in certain cases.

5. Computational experiences

To test the above ideas, we included the super register technique in our MILP
linear programming optimizer [Mar91]. Presently (November, 1992), this imple-
mentation is temporary, not full-scale, and experimental. "Not full-scale" means
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that our first version uses alternative (1) of the previous section which is clearly
the simplest and the poorest version. In this way, the present implementation can
be considered a hybrid one.

In addition to this, it important to note that the code is not tuned yet,
and a number of measuring. instructions are also present influencing the actual
performance.

The purpose of tests was twofold: (1) to see the extent of improvement in
numerical accuracy, (2) to get an idea about the speed of the new technique in
comparison with the earlier, "traditional" version. MILP originally uses (2.1) type
relative zeroing.

For testing we used some numerically nontrivial problems from NETLIB
[Gay85]. A smaller representative of this category of problems is GROW7.

We made a special test with GROW7. First, we used the 80 bit extended accu-
racy of the arithmetic coprocessor, and applied two alternative ways to compute
FTRAN. The only difference was the order how the inner produts were computed.
At iteration 371 this resulted in a different basis change. One of them was a wrong
one due to accumulated errors. The correction of this error took several iterations
after the next factorization. When the SR technique was used with L = 16,
the basis changes were not influenced by different ways of FTRAN, showing that
associativity is better achieved with the present environment of SR.

In the table below we summarize our experiences with the original and SR
version of MILP, where the SR version is a temporary one as described above. The
old version of MILP uses the product form of the inverse. Programming language
is Fortran77, program was compile by Lahey F77L-EM/32 V4.0. Solution times
of a 486 PC are given seconds.

Problem Version Iter. Time Remark

GROW7 Old 526 30.04 Minor numerical troubles
GROW7 SR 538 40.59 -

GROW15 Old 2625 340.30 * Num. troubles, solution abandoned
GROWl5 SR 893 155.16 One tiny corrected inaccuracy
GROW22 Old 1753 397.66 * Serious troubles, solution abandoned
GROW22 SR 1400 446.71 Few small corrected inaccuracies
STAIR Old 752 127.81 Opt. sol. achieved after numerical troubles
STAIR SR 543 123.08 -
PILOT4 Old 775 107.77 * Num. troubles, solution abandoned
PILOT4 SR 1049 267.54 -

The occasional minor troubles with the SR version mean that after factor-
ization very small deterioration in the objective value or feasibility might have
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occured. The reason for that is that operation (4.1) is not performed with SR yet.
The brief message of the above table is that the iteration speed does not slom

down seriously by using SR, while the accuracy expectations tend to be fulfilled. In
the "non-temporary" version the speed of factorization will be doubled, while the
implementation of additional refinements will have a slight counter-effect. After
all, the complete implementation of the idea of SR will tell us the final answer to
its applicability and usefulness.

It is worth mentioning here that we tested SR also in the framework of our

interior point algorithm. The algorithm is of primal a~ffne scaling type. SR was
used in factorization only. We observed an increase in accuracy of half to 2 orders
of magnitude on problems GROW7. GROW22, and PILOT4.
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1. Introduction

Given n items and rn units, the penalty, pij, and the resource requirement, rij,
corresponding to the assignment of item j to unit i (j = 1,.-- ,n;i = 1,---M),
and the amount of resource ai available at unit i (i = 1,...,i), the Bottleneck
Generalized Assignment Problem (BGAP) is to assign each item to one unit so that
the total resource requirement for any unit does not exceed its availability and the
maximum penalty incurred is minimized. We will assume in the following that
all numerical input data (pij, rij, ai) are non-negative integers. By introducing
binary variables zij, with

1 if item j is assigned to unit i;
X= 0 otherwise,

the problem can be formulated as

minimize z = max{pij,} (1)
n

subject to E rijzj _< a,, i E M = {1,... ,m}; (2)
j=1

E N- {1,...,n); (3)

-Tij E 0, 1}, i EM, jEN. (4)
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The problem has applications in the fields of scheduling and allocation, among
others. Suppose for example that each of n urban areas has to be served by one of
m emergency centres. Let pij be the travel time between centre i and area j, rii
the expected workload for centre i if area j is allocated to it, and ai the maximum
workload that centre i can support. The solution to BGAP will then give the
feasible solution minimizing the worst-case travel time between an area and the
associated centre.

BGAP is the min-max version of the well-known (min-sum) Generalized As-
signment Problem (GAP), given by

oT 73

minimize E ES iii
i•1 j=1

subject to (2),(3),(4).

It is known that GAP is NP-hard in the strong sense, since even its feasibility
question is so (see, e.g., Martello & Toth (1990), Ch.7). Hence the same results
apply to BGAP.

Several contributions to the solution of GAP can be found in the literature
(Ross & Soland(1975), Martello & Toth(1981,1990), Fisher, Jaikumar & Van
Wassenhove(1986), J6rnsten & Nisberg(1986), Guignard & Rosenwein (1989),
among others). Mathematical models and a technique for transforming BGAP
into GAP have been given by Mazzola & Neebe(1988); to our knowledge no other
result has been published in the literature.

In the next section we introduce lower bounds for the problem, which require
the solution of bottleneck knapsack problems. Approximate algorithms are exam-
ined in Section 3. In Section 4 we describe a branch-and-bound algorithm for exact
solution of the problem, and in Section 5 examine its computational behaviour.

2. Relaxations and Lower Bounds

We consider lower bounds obtained by relaxing constraints (2), either directly (by
decreasing the resource requirements) or through surrogate techniques. In any
case, we never allow an item j to be assigned to a unit i if, in the non-relaxed
instance, rij > a,.

Relazation of the Resource Requirements

An immediate lower bound can be obtained by eliminating constraints (2). It is
then evident that the resulting problem can be exactly solved, in O(nm) time, by
determinig

ii(j) - arg nmin{pii rij <ai} (j E N)
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and computing the lower bound value

Lo = max{pi,(j)j}.
i

If the corresponding solution (obtained by assigning each item j to unit i1 (j))
satisfies constraints (2), then this is clearly the optimum. Otherwise, a better
bound L, can be obtained by imposing one of the violated constraints (as shown
in Martello & Toth (1991)). The time complexity for the computation of L0 and
L, is O(nm).

Surrogate Relazation

For a given vector (7ri) of non-negative multipliers, we define the surrogate relaz-
ation of BGAP, S(BGAP,ir), as

minimize i(r) = rn a.x{pijij}
34
m n m

subject to 7r, E rijzij E 7ria,,

i=1 j=1 i=1

(3), (4).

For any non-negative vector (7re),

L 2(W) = i(W)

is then a lower bound for BGAP. It is proved in Martello & Toth (1991) that,
for any vector (7ri) of multipliers, lower bound L2 (W) can be computed in O(nm)
time.

3. Approximation Algorithms

A feasible solution to BGAP of value not greater than a given threshold 1 can
be heuristically found through a procedure which considers the items according to
decreasing values of the difference between second smallest and smallest resource
requirement for a feasible assignment, and assigns the considered item to the unit
having the smallest resource requirement. If an item is found for which no feasible
assignment is possible, the procedure returns no solution; otherwise it returns
the feasible solution found. This procedure, which can be implemented to run
in O(nm log m + n2 ) time, can be used to determine an approximate solution to
BGAP by searching for the lowest value t9 for which a feasible solution is returned.
If this is done through binary search, the overall time complexity of the resulting
approximation algorithm is O(nm log m+/3(nm+n 2 )), where P denotes the number
of bits required to encode maxi,j{p0}.

Other approximation algorithms are described in Martello & Toth (1991).



413

4. A Branch-and-Bound Algorithm

The results of the previous sections have been used to obtain a branch-and-bound
algorithm for the exact solution of BGAP.

Branching Scheme

The algorithm consists of a depth-first search in which, at each level, an item j*
is selected for branching and assigned, in turn, to all feasible units.

The branching item is selected according to the following criterion. Let z
denote the best incumbent solution value, L the current lower bound value, Ui
(i = 1,....,m) the amount of resource currently available for unit i, and U the set of
currently unassigned items. For each j E U, Mi = {i E M : rii :_ "i and pii <_ L}
is the set of units to which j can be assigned without increasing the lower bound.
Hence

rj -. F [Mj (ila

IMI
represents the average percentage resource requirement of item j, while

6, = min 2 {ri : i EMI} - min{ri : i EM}

is the minimum additional resource requirement if item j is not assigned to the
unit with minimum requirement. Since the higher rj or 6i , the more critical is
item j, the branching item is selected through

j*= arg max({r(l + 6i)}.
IEU

Now let Mi = {i E M : rii :_ Zj and pij < z} denote the set of feasible units
for item i E U. IMi. I son nodes are generated by assigning j* to all i E MV.,
according to increasing values of rii., and the search is resumed from the first of
these nodes.

Fathoming Decision Nodes

Consider a decision node generated, say, by assigning item j. E U to unit i6 .
Before computing the corresponding lower bound value, the following dominance
criterion is applied. The node can be fathomed if there exists an item jb V U,
currently assigned to a unit i, 6 i., such that by interchanging the assignments
the current lower bound and resource requirements do not increase.
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Initialization Phaje

At the root node of the branch-decision tree, a lower bound L* on the optimal
solution value is first computed. The approximation procedure of Section 3 is
then applied, obtaining a first incumbent solution of value z. If z > L*, the first
branching item is determind, and the enumeration process begins.

5. Computational Experiments

The branch-and-bound algorithm of the previous section was coded in Fortran and
computationally tested on a Digital VAX station 3100.

The computational experiments were performed on four classes of randomly-
generated problems. Table 1 gives, for different values of n and m, the average
number of decision nodes and the average CPU times (expressed in seconds)
computed over ten problem instances. For each instance, the execution was halted
as soon as the number of nodes reached 10 '. For such cases, we give (in brackets)
the number of solved problems and compute the average values over them.

Class (1) was introduced for GAP by Ross & Soland(1975):

(1) rij uniformly random in [5,25], i E M, j E N,
pii uniformly random in (10,50], i E M, j E N,
ai = 9(n/m) + 0.4 maxkEM{"j•.~i((j)=. rkj},i E M.

The results show that the problems of this class are very easy. Most of the instances
were solved by the initialization phase. The computing time increases almost
linearly with both n and m.

More difficult problems can be obtained by decreasing the ai values:

(2) rij and Pu as for Class (1),
ai= 60% of the value obtained for Class (1), i E M.

The computational results show indeed a considerable increase in the computing
times, especially for m=5 and m=10. Most of the instances of this class admit no
feasible solution for m=2 or 3, and very few feasible solutions for m=5 or 10.

For both Classes (1) and (2) the range of the penalty values is very limited.
In order to test the behaviour of the algorithm when the optimal solution value
must be found in a larger range, we considered the following class:

(3) rij uniformly random in [1,1000], i E M, j E N,
pij uniformly random in [1,1000], i E M, j E N,
a, = 0.6 'jEN rij/m,i E M.

The results show a satisfactory performance of the algorithm. For almost all values
of m the difficulty of the instances increases for n going from 10 to 100.

The last class was obtained by introducing a correlation between penalties
and resource requirements:
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Table 1. Exact solution. VaxStation 3100 seconds.
Average times / Average numbers of nodes over 10 problems.

clas (1) Class (2) Class (3) Class (4)
m n time nodes time nodes time nodes time nodes

2 10 0.01 1 0.01 0 0.01 0 0.01 2
25 0.03 3 0.01 0 0.01 0 0.01 0
50 0.02 0 0.02 0 0.02 0 0.03 0

100 0.03 0 0.03 0 0.03 0 0.03 0

3 10 0.01 0 0.07 13 0.10 6 0.07 5
25 0.03 3 0.09 27 0.34 67 0.14 16
50 0.02 0 0.30 76 0.21 19 0.09 4

100 0.04 0 0.05 0 3.02 404 0.04 0

5 10 0.01 0 0.11 18 0.10 3 0.10 7
25 0.02 0 5.69 1856 1.58 275 0.60 129
50 0.03 0 8.35 1950 5.92 1162 0.04 0

100 0.06 0 70.99 13078 10.25 1557 0.06 0

10 10 0.04 1 0.07 2 0.02 1 0.04 1
25 0.03 0 1.21 177 0.76 74 2.77 491
50 0.05 0 41.96 5951 7.46 786 367.40 54926

100 0.11 0 338.05 41311 0.22(9) 0 0.12 0

Table 2. Approximate solution. VaxStation 3100 seconds.
Average times / Average percentage errors over 10 problems.

Class (1) Class (2) Class (3) Class (4)
m n time % err. time % err. time % err. time % err.

2 10 0.01 0.00 0.01 0.00 0.01 0.00 0.02 0.00
25 0.02 0.00 0.01 0.00 0.01 0.00 0.01 0.00
50 0.02 0.00 0.02 0.00 0.02 0.00 0.02 0.00

100 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00

3 10 0.01 0.00 0.05 0.00 0.09 0.00 0.06 0.00
25 0.03 0.00 0.03 0.00 0.16 0.12 0.09 0.00
50 0.02 0.00 0.04 0.00 0.12 0.00 0.06 0.00

100 0.04 0.00 0.04 0.00 0.41 0.00 0.04 0.00

5 10 0.01 0.00 0.07 0.00 0.10 0.00 0.08 0.00
25 0.02 0.00 0.21 0.31 0.28 1.03 0.19 0.65
50 0.03 0.00 0.25 0.26 0.51 0.29 0.04 0.00

100 0.06 0.00 0.41 1.09 0.26 0.02 0.06 0.00

10 10 0.04 0.00 0.06 0.00 0.02 0.00 0.04 0.00
25 0.03 0.00 0.30 1.54 0.40 0.48 0.37 0.62
50 0.06 0.00 0.20 0.00 0.95 1.02 0.22 0.00

100 0.11 0.00 0.31 0.00 0.54 1.34 0.12 0.00
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(4) rij uniformly random in [1,800], i E M, j E N,
pqi uniformly random in [1,1000-rij], i E M, i E N,
a1 = EjEN rij/m, i E M.

The computational results show good behaviour of the algorithm for these prob-
lems too, with comparatively higher computing times for n < 50.

In Table 2 we analyse the performance of the approximation algorithm of
Section 3. For the same instances as Table 1 we give the average CPU time
(expressed in seconds) and the average percentage error 100(z' - z)/z, where z"
is the approximate value, and z the optimal solution value or the lower bound
value computed in the initialization phase (for the instance not solved exactly).
The results show very good behaviour of the approximation algorithm, both for
running time and the quality of the solutions found.
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NEURAL NETWORK ALGORITHMS FOR COMBINATORIAL
OPTIMIZATION PROBLEMS: THEORY AND EXPERIENCE

Igor I. Melamed

Many combinatorial optimization problems are hard

to treat, so new approaches would be fruitful. Over

the past yearsmany attempts have been made in order to

solve some combinatorial optimization problems, such

as the traveling salesman and the graph partitioning

problems, by applying algorithms based on neural

networks. It is certainly of great interest to try to

understand how a parallel structure, Like neural

networks, can solve this type of problems. It is

likely that these kinds of studies could be useful in

understanding of some mechanisms of nervous system of

animals. Effectiveness of this approach has been

discussed in ! 1 ].

In this paper, we present a theoretical study and

computational experiments for solving the assignment,

the quadratic assignment, the matching, the graph

partitioningthe graph coloring, the knapsack , the

set covering, partitioning and packing, the Weber -

Fermat, the transport and the transshipment, the
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niMxiU.Ml fllow, the linoar, the :integer Linar, and the

convex programming problems using Hopfield's

neural networks.

Hopfield's neural network (HNN) is an undirected

graph G=CVE) , where V is the set of nodes, IVI=n

and E Is the set of edges of (3 , with

threshold u 2! 0 and state x. associated with eacht t

node ( neuron ) i and connection of strength T..

associated with each edge Ci.j) .T=(T) Is the

nxn symmetric matrix, and can be T > 0 oriF-

TQ<O . The state of a HNN in time t is

n-vector XCt)=Cx .Ct)).

There are three types of HNN:

DD - neural networks with discrete time t0,1,2,..

and discrete states x e(O01 , i0.1n
i

DC - neural networks with discrete time and continious

states X .fO.), I ,i=fn ;

CC - neural networks with continlous time

and continious states.

The time evolution of FINN can be described by the

following systems of coupled nonlinear equations:

DD- networks
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xiCt+I)=HCET ij'iCt-u i=i.n

where

-0. z :5 0
HCz)=

DC - networks

xiCt+ I):¢(CEjr Tj.xjCt)-uj), i=I-n

where CiCz) - monotonic sigmoidal function with 0 and I

t-asymptotes, for example Cicz)=0.5cI+thz);

CC- networks

dWi/dt =E i TjXj-U.i-w i ./T

x .='rl .), i=I,n.
Si.

HNN can be considered a nonlinear dissipative

dynamic system. This system has the Uiapunov function

- the energy of the state. All attractors of the HNN

are either fixed points or period - two limit cycles.

To enable the HNN to compute a solution to the

combinatorial optimization problem, the problem must

be described by an energy function in which the lowest

energy state ( only fixed point HNN ) corresponds to

the best solution.

Basic theoretical results of the paper are:

1. A natural way of solving combinatorial optimization
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of HNN, for which an infinitesimal breach of synumetry

of the matrix T causes appearance of attractors

that are large - period cycles, may be constracted.

2. If the matrix T is positive semidefinite,

then in DD and CD-networks all attractors, that

are Limit cycles, disappear and only fixed-points

remain. But for many combinatorial optimization

problems the matrix T is not positive semidefinite.

3. By analyzing the eigenvalues and corresponding

subspace of the matrix T , parameters in the

eirergy function for combinatorial optimization problems

may be selected.

The mentioned combinatorial optimization problems

were states as energy of state HNN minimization

problems. Many of the problems were studied with

different energy functions. Presumably, it was

determined that the neuroalgorithms find local optimal

solutions for all the problems studied.A more detailed

computational experiment was carried out for the

linear and quadratic assignment, matching, graph

partitioning, graph coloring, node covering, knapsack,

Weber-Fermat, linear programming problems.

Due to the fact that the aim of experiment was the

study of solving of combinatorial optimization
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problem in principle emall-eize problem wore solved.

The number m of graph nodes, as well as the number

of variables In linear programming problems didn't

exceed 10. The knapsack and the Weber-Fermat problems

were solved with up to size m =100.

Optimal solutions have been obtained In every

problem after no more then 20 attempts with different

initial states. Over 85% of attempts achieved local

optimal solutions. The number of iterations for one

attempt was about m for DD and CD-networks and about

50m for CC-networks. But DD and CD-networks not

always obtained optimal solutions. Best results were

achieved for the knapsack and the Weber-Fermat

problems. The number of iterations required to find a

local optimum didn't exceed three.

The traveling salesman problems were solved using

Kohonen's neural networks. The results are very good.

The optimal solutions were obtained for ten problems

with 50 nodes within 2000 iterations.

So, the neuroalgorithms are a new interesting

class of algorithms for combinatorial optimization

problems.

III lopfield J.J. The effectiveness of analoque neural
network hardware. Network v.1,# 1, pp.27-40, 1990



NUMERICAL SOLUTION OF CERTAIN DECOMPOSITION -
COORDINATION PROBLEMS IN NONLINEAR PROGRAMMING
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Kadaka pst. 165, Akadeemia tee 21,
KEO108, Tallinn EE0108, Tallinn

With a certainity large scale computing of the future will

certainly be to a large extent parallel in one form or another.

One way to break a problem up into smaller subproblems which may
be treated independently is the use of decomposition-coordination

schemes, i.e. the problem of the adjustment of aggregated problem

in each iteration decomposes it into independent subproblems of

smaller dimension. If the original problem has a block structure
with coupling parameters, then these subproblems are formulated

in accordance with the blocks. Computing requirements in several

applications areas are unlikely to be satisfied solely by

uniprocessors in the future. Decomposition of an original problem

into smaller ones can greatly simplify its solution on parallel

computers of various architectures.

Numerical solution_ of certain decomposition-coordination
problem in convex programming involves often the solution of

systems of nonlinear equations or minimization problems to obtain

proper values for coordination parameters. The decomposition-

coordination problem has some specific features:

- the user has his disposal only values of functions;

- the evaluation of function values includes, as a rule,

the solution of certain subproblems and therefore it can

be accompanied with a great computational effort;

- frequently these functions are continuous but not neces-
sarily differentiable at all points of the region under
consideration that causes additional difficulties.

Hence to obtain a method that is robust, stable and compu-
tationally convenient and efficient, in practice, this is far

from a trivial task. In other words one principal problem is the
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choice of a good starting point, the second problem is how to

perform when the Jacobi matrix is singular or ill-conditioned in

a region. Storage and computer time economy is also usually

highly desirable. Unfortunately none of existing methods

satisfies simultaneously all the above mentioned requirements. In

this connection a polyalgorithmic approach can be fruitful, i.e.

one combines best features of various methods and it is required

that a single numerical algorithm involving in the combination is

efficient in a stage of computational process or for a class of

problems.
1. S t a t e m e n t o f t h e p r o b 1 e m. Consider

a system of nonlinear equations
H(x,p) =0 ()

where H=(H1,....H. T and P=( 1,***,P )T while x=(x, .. ,Xn)T is

to be determined as a solution of nonlinear problems
Fi(xip) -r min, x. Er ,(p), (2)

depending on the parpmeter p and where F is the performance
ni-

index of the i-th subproblem and Fi(p) c R is its feasible re-

gion. Assuming that the problems (2) have the solutions xi=xi(p),

we shall study the problem for determining the vector E Rm

from the equation

H(x,(p*),p*) = C0 (3)
such kind of problems arise just not seldom in convex programming

with a great number of variables or with a complicated structure.

Further we shall reformulate the problem (3) in the form more

suitable for mathematics

F(x) = 0, (4)

where F(x) = H(.,x) and x will stand for the desired quantity

(the parameter vector).

2. M e t h o d s. In general, methods involving

derivatives turn often to be more effective, due to the

additional information provided, than derivative free ones. For

decomposition-coordination problems only function values are

available. For obtaining information about derivatives finite-

difference approximations are needed to implement more efficient

methods in the region where F(x) is sufficinetly smooth. In the
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latter case the main amount of computational work is usually

spent in evaluating the Jacobian. Sacrificing accuracy in favour

of simplicity one can use rank-1 approximation to the Jacobian

'he evaluation of which is comparatively more economical. As

a rule 'he total number of iterations is then usually increased
and such kind policy of economy is questionable. Moreover a

serious disadventage of Newton method, which is in fact shared

with all Newton-like methods, is the possibility of divergence in

the cases that the Jacobian is (nearly) singular or

iil-conditioned at some iterative points since they are based on

a linear model. Methods of order p03 are taking adventage, at
"least, of a quadratic model and therefore they are capable to

solve systems of nonlinear equations with the singular or

ill-conditioned Jacobian. The total cost of an iterative method
is determined by the number of iterations needed to achieve the

required accuracy and the cost of each iteration. In this respect
the implementation of the iterative methods with the convergence

order higher than that of the Newton method appears to be promi-

sing since high order methods need, as a rule, for computing a

solution with prescribed accuracy comparatively less iterations

and therefore likely less total arithmetic for calculting the

function values and its derivatives than method based on a linear

model.
If a sufficiently good initial estimate for the solution

is available then one can for purpose of economy to use the
modification of the method of tangent parabolas

S= yk - [F(2yk - Xk;Xk)-IF(Yk) (5)

Yk = Xk - [F(2yk-1 - Xk-l;'k-1)]-1F(xk) (6)

,?hich has the asymptotic convergence rate equal to 3 provided

the second order derivatives F" is Lipschitz continuous and other

reasonable assumptions are fulfilled [1]. If F has only the first

derivatives and the corresponding divided differences are
Lipschitz continuous then its convergence rate is at least equal

to i+47 [2). The procedure (5)-(6) requires few information per

iteration: two values of F and one value of the divided

difference (except the first iteration).

The method (5)-(6) can also be interpreted as a limit case
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(p-0) of a parametric family of iterative methods

Vk _ 2AkF(Vk) + 1 Ak[F(vk + PAkF(Vk)) - F(Vk)] (7)

vk = xk - XkF(Xk), k=0,1,... (8)

where Ak, Ak and Xk are certain linear operators approximationg

(F')- and p is a nonzero real parameter f1i].
If the dimensionality of the problem is not large then it

may for some reason be suitable to use the following modification

of tangent hyperbolas

k+1 = Xk - F( 2 uk - Xk;Xk)]-lF(Xk) (9)

where = 1k -BF(xk) and Bk = [F( 2 xk - xk_;xk)-.

In particular, the symbols Ak, Ak' Xk and Bk not only

denote finite difference approximations to Fk = [F'(xk)]I and

[F'(xk - ½FkF(Xk)]-1 respectively but they can also express the

fact that the corresponding linear equations are solved approxi-

mately [3].
In addition to stability and economy of the method a

crucial problem is the choice of a good starting point. A serious

defect of high order methods is their pretentiousness with

respect to an initial guess, i.e. the adventages of those become

avident mostly in the close vicinity of a solution.

One of -the most effective- ways - to guarantee the global

convergence or at least greatly to expand the domain of

convergence of a method is the "continuation strategy". According

to this strategy one first replaces F(x) = 0 by a one-parameter

family of problems G(x,X) = 0, X E [O,1],such that F(x) = G(x,l)

and the solution of G(x,O) = 0 is known secondly one solves a

series of problems as the parameter % is slowly varied by a

locally convergent iterative method using the solution to the

previous problem as a starting point for the current problem. The

rules for changing the value X can be suggested by the physical

nature of the problem but some standard mathematical algorithms

exist for this as well. All continuation (homotopy) methods

suffer from the disadventage that a Jacobian at some points could

become singular. Therefore the homotic strategy needs stable

local algorithms to be successful [4,5]. In this respect methods
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based on a quadratic model meet this requirement and using them

in homotopy methods can be justified even if the implementation

of high order methods for solving some particular problems in the

homotopy methods is not efficient due to a great number of compu-

tational effort involved.

This report suggests another approach to ensure the

convergence from a poor starting point. This strategy consists in

combining global and local methods to obtain more robast ones.

This approach may be more successful for decomposition-coordina-

tion problems due to their possible nonsmoothness at some

iterative points, i.e. the functions determining the problem may

belong to almost differentiable functions [8]. The strategy of

the polyalgorithmic procedure under consideration is use of a

high order method (p>2) if it works otherwise to switch on a

modification of the Newton method with finite-difference approxi-

mation of the Jacobian [cf.91 bearing in the mind that the Newton

method requires a good initial guess only for guaranteering

quadratic convergence but in many cases-it may progress starting

from a poor initial estimate [7]. If the Newton-type method also

does not work then to switch on a more slower but sure global

method depending on smoothness of the problem: on a method based

on the steepest direction provided involving functions are

differentiable or otherwise on a method using subgradients (e.g.

methods from [8]). After accompiishing certain number of

iterations by the global method one attempts to start with a high

order method once again.

In the case of smooth problems one can take as a global

method the one

xk+1  = k - akg(xk), c>0, (10)

where g(x) = [AF(x,h)]TF(x ) and AF(x,h) is a finite-difference

approximation to F' and h is the step of discretization or the

two parametric methods (of.9]

Xk+I = 1 k - ?kg(Xk) + kk khk) (Xkhk)g(Xk) k>O (11)

Likewise (10) and(11) can be used for solving linear equations in

the inexact local methods.
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3. Numerical examples . It is well known

that mathematically efficient methods do not necessary result in

efficient computer programs. On the other hand the worst case

bounds for a method may be too pessimistic and, in practice, it

may, on the average, to perfnrm better than expected.

The performance of the above method (5)-(6), (7)-(8) and

(9) is tested on a small set of test problems containing 14

problems for systems of nonlinear equations of Argonne National

Laboratory plus Freudenstein and Roth function and Box three-di-

mensional function for nonlinear least squares taken from (10).

The methods under review were compared with the following methods

which were tested on the same set of test problems.

1. The Newton method.

2. The modified Newton method (Fo=F k, k=1,2,...).

3. The version of the Newton method with finite-difference

approximation.

4. The Bartysh method (p=1+47) [11].

5. The Kogan method [12]

k k - (Xk)

xk+1 = Xk - [F'(Vk )]-'F(xk).

6. The modification of the Kogan method

vk = 7 - irkF(xk)

q-1
xk+1 = xk - rk Z (I - F' k)rk)

i=O

where I denotes the identity mapping.

7. Shacham method (CONLES) which combines the Newton and

the Levenberg-Marquart ones (13].

Further the following numeration is used.

8. The method (5)-(6).

9. The combination of the method (5)-(6) and Newton's one.

10. The method (7)-(8) with p=-1, p=-! and p=-5.2
All the problems were run on a EC1060 computer under a

FORTRAN-IV compiler. The calculus was performed in double

precision and stopped IXkI - Xk1 •< 10-9. Termination of the

routine also occured when the number of iterations exceeded the

given maximum value 300. The table 1 gives iteration number N at
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which the presigned accuracy was achieved and where "-" denotes

the failure (nonconvergence). The table 1 indicates that the

methods (5)-(6) and (7)-(8) require a good initial estimate. But
when started from an initial point, which was close enough to the

solution they would converge very fast. Besides they guaranteed

almost the same results, both in single and double precision,
while the Newton method yielded worse results with the single

precision.

Table 1

Method 1 2 3 4 5 6 7 8 9
p=-1 p=-t p=-5

1 3 3 3 3 2 2 3 2 2 2 2 2

2 32 k>300 31 27 21 21 18 - 38 14 14 13

3 13 - 19 12 9 9 12 - 12 8 8 8

4 15 k>300 47 14 28 24 14 - 17 - - 140

5 1 - _- - 6 8 9 - 10 - - -

6 (m=6) 13 k>300 45 15 9 9 12 - 14 8 8 -

7 6 4 5 5 - 5 4 - -

8 91 - 80 - k>300 - 6 - 92.- - -

9 4 6- 3 4 3 3 3 3 3-- 3 3 2

10 (r=10) 4 6 4 4 3 3 3 3 3 3 3 2

11 8 k>300 6 12 7 - 8 - 6 - - -

12 15 k>300 20 13 10 10 14 - 16 9 9 9

13 5 22 4 5 4 4 5 - 5 3 3 3

14 7 60 6 6 5 5 6 - 5 4 4 4

15 43 k>300 42 10 25 60 49 23 23 67 51 229

16 6 30 5 5 4 4 5 4 4 4 4 3

The comparison of the columns 5 and 6 shows that the Kogan

method and its inexact version give approximately the same
results.
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The performance of the hybrid method (5)-(6) which

combines the best features of (5)-(6) and the Newton method as

well as method CONLES was slightly superior both in speed and

accuracy to the Newton method. These promising results encourage

to carry on (extend) the investigation of properties of polyalgo-

rithmic procedures.
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Extended Abstract

Some large scale LP relaxations for the graph
partitioning problem and their optimal solutions

M. Minoux
Universiti Paris 6'

1 Introduction

The so-called Graph Partitioning Problem (GPP) has applications in many areas such
as data analysis and clustering, VLSI circuit layout, block decomposition of large linear
systems, etc ...

The purpose of this paper is to investigate a family of large scale linear programming
relaxations for (GPP) which extends the one considered in Minoux [41 and Minoux and
Pinson 15]. Some of the problems in the family are shown to be polynomially solvable, in
which case characterizations of their optimal solutions are given.

As an outcome, bounds a-e derived which may be of use e.g. to validate approximate
(heuristic) solutions, or to implement Branch and Bound procedures.

We consider here the uncc istrained version of the graph partitioning problem which may
be stated as follows. Suppose we are given an undirected connected graph G = [X, U] with
node set X (IXI = N) and e&'ge set U (IUI = M), and an integer p < N. For any S C X,
we denote "y(S) the total number of edges in U having both endpoints in S.

(GPP) is then to find a partition of X into p subsets S1, S 2,..., S. such that the quantity:

Z = l(S) + -(S2) + + 7(Sp)

is maximized.

'MASI. Universiti Paris 6, 4 Pi'ace Jussieu, 75005 Paris, France
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2 A family of large scale (LP) relaxations

For any integer q (N - p + 1 <- q _< N) we consider the large scale set partitioning
problem (R~q]) defined as follows.

Suppose that the nonempty subsets.of X are numbered 1,2,. .. , J (J = V4 - 1) and
let J. denote the number of subsets having cardinality 5 q.

Let us denote A = (aij),,,) .N the incidence matrix of all the subsets with cardinality
. IJq

< q. Thus, for the subset Sj having index number j (1 < j <_ Jq) a,, = 1 if node i is an
element of Sj, aij = 0 otherwise.

To each subset Sj we let correspond a binary variable xj (xj = I if subset Sj is selected
in the optimum partition to be found, xj = 0 otherwise) and a cost cj defined by:

c' =

where -f(Sj) denotes the total number of edges in U having both endpoints in S3 . With this
notation, the large scale set partitioning problem (Rfq]) reads:

Jq
Maximize E cjxj

j=1

subject to:
(R[q]) A.x = 1 (1)

j=1

xE {o,i,). (3)

(1 denotes the N vector with all components 1).

Since any partition solving (GPP) should composed only of subsets having cardinality
<N -p+ 1, for any q > N-p + 1 (R[q]) and (GPP) are equivalent. Even for graphs having
moderate number of nodes (> 15 say) (R[q]) will have an enormous number of columns. So
for q > N - p + 1 we are led to consider the linear relaxations (R[qj)) to (RJqJ) which are
simply obtained by replacing (3) by:

i 1!o (j=,...,J0).

We note here that for the' special case q = N the set partitioning problem (R[N]) and
its relaxatio(R--N-) were int:oduced and studied in Minoux [4]. In particular it was shown
there that (R[N]) is polynomially solvable by means of the "Ellipsoid Algorithm" (Khachian
[3]). In Minoux and Pinson (5] a generalized linear programming algorithm (Dantzig [1]) was
applied to derive bounds on optimal solution values to (GPP) and computational results were
presented.
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3 Polynomially solvable cases and associated optimal
solutions

The first result concerns the special case q = N. The polynomial solvability of (NR---[) was
already established in Minoux 141, but the proof there was based on the use of the Ellipsoid
algorithm; thus the existence" of a purely combinatorial algorithm for solving (R[N]) was
left open. Theorem 1 below shows that, at least for some values of p, the question may
be answered positively. Given a subset S C X such that ISI >_ 2, we define B(S] as the
(N + 1) x (N + 1) matrix:

B[S]=.. .
L1[ i

with v the incidence vector of S in X.

Theorem I Consider S" C X IS*[ > 2 such that:

-y(S')/(ISIl - 1) = max{f-(S)l(ISI - 1)) (4)
ISl_>2

and suppose that IS*I >__ N - p + 1.
Then B[S'j is an optimal feasible basis for (R[N]) and the corresponding optimal objective

function value (an upper bound to (GPP)) is:

-7( ')(N -p) x I-00- ) (5)

The maximization problem (4) is a maximum ratio problem which can be efficiently solved
in polynomial time, by a purely combinatorial algorithm (through a sequence of maximum
flow problems). Therefore, w-en the conditions of Theorem 1 apply (namely p >_ N-IS' 1+ 1)
this result leads to a purely combinatorial algorithm for solving (R[N]) both practically and
theoretically more efficient than the other previously known approaches (Ellipsoid algorithm
or generalized linear programming).

The second result below is a generalization of the previous one to other problems in the
family (Rfq]), for some values of q in the range [N - p + 1, NJ. Since the strength of the
relaxations (R[q]) improves f&r smaller values of q, it is not surprising that the resulting
(upper) bounds are never wome (but usually better) than those given by (5).

Theorem 2 For A > A* = -00) max { (SI let 3 be a subset satisfying:

y(3!) - A(131 - 1) = max{7 (S) - A(ISI - 1)} (6)

and (3) = q.
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Then for q >_ N-p + 1, BM is an optimal feasible basis for (R-q-) and the corresponding
optimal objective function val-.e (an upper bound for (GPP)) is:

(N - p) x (7)

Since there are only finitely many subsets of X, (6) has only finitely many distinct optimal
solutions when A varies in the cange IA', +oo[. Let 31,32,.. ,3', denote those solutions with
cardinality *_ N -p + I and let I131 = qI, I121 = q2,..., ,13tI = q,. Theorem 2 implies that
(R[q]) is polynomially solvable (by a purely combinatorial algorithm) for q E {qi, q2,..- , qd.
Moreover the best possible (upper) bound for (GPP) which may be derived from (7) is:

(N -p) x I• I (N -p) x min (•l-J
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Optimal Budgetary Policies under Uncertainty:

A Stochastic Control Approach

Extended Abstract

Since the mid-eighties the size of the federal budget deficit has been of much concern
to policy-makers in Austria. By and large, they now generally agree upon the necessity
of consolidating the federal budget to prevent a loss of credibility of fiscal policies.
Nevertheless, there are trade-offs and side-effects associated with a policy of gradually
or even suddenly diminishing the budget deficit. So far, no quantitative informations
are available about the effects of budgetary measures on the main objectives of
Austrian economic policy, such as growth, full employment, price stability, and balance-
of-payments equilibrium. Moreover, neither the intertemporal trade-offs nor the issue
of policy-makers' limited information about future events has received serious
attention in the political debate in Austria so far. The question of how to design
budgetary policies under these conditions can be seen as a typical problem of the
theory of quantitative economic policy. If we are ready to postulate an objective
function to be optimized by policy-makers, we can apply stochastic control theory to
derive and analyse optimal budgetary policies for past or future periods.

In this paper we determine optimal budgetary policies for Austria using a small
macroeconometric model. This model, called FINPOL1, is based on traditional
Keynesian macroeconomic theory in the sense of IS-LM/aggregate demand-aggregate
supply models. Stochastic behavioral equations for the demand side of the economy
include a consumption function, an investment function, an import function, and an
interest-rate equation as a reduced-form money market model. Prices are largely
determined by aggregate demand variables. Disequilibrium in the labor market, as
measured by the excess of unemployed persons over vacancies, is modeled to depend
upon the real GDP growth rate and the rate of inflation, embodying both an Okun's
law-type relation and a rudimentary Phillips curve. The main objective variables of
Austrian economic policies, such as real GDP, the labor market disequilibrium variable
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(related to the rate of unemployment), the rate of inflation, the balance of payments
and the ratio of the federal net budget deficit to GDP, are related to those fiscal and
monetary policy instruments which are used as control variables. Particular attention is
given to the influence of variables of the federal budget (revenues and expenditures) on
the endogenous variables of the model. The model FINPOL1 is a nonlinear model; it
was estimated by ordinary least squares using annual data. Several tests and tentative
simulation experiments indicate that its tracking capability is reasonable and that it
provides a satisfactory framework for analysing effects of budgetary policies on the
Austrian economy.

Next, we apply the algorithm OPTCON to calculate optimal fiscal policies for the
eighties, during which the problem of rising federal budget deficits was most
pronounced. OPTCON has been developed by Josef Matulka and the author; it
determines approximately optimal control paths for nonlinear stochastic dynamic
systems under quadratic objective functions. We give a short description of this
algorithm and discuss its strengths and present limitations. An objective function is
formulated which serves as expression of the preferences of an hypothetical policy-
maker in charge of the federal budget. Target paths and preference weights for the
objective variables are determined in an ad-hoc way after some trial and error. Using
this objective function and the dynamic constraints as given by the equations of the
model FINPOL1, we determine approximately optimal time patrs for the budgetary
control variables and the endogenous (especially the target) variables under the
assumption of complete information for the policy-maker. In addition to this
deterministic optimization run, different assumptions about parameter uncertainties
are introduced in order to assess the influence of various kinds of uncertainty on the
design of optimal budgetary policies. In particular, we investigate the effects of making
several key parameters determining fiscal and monetary policy multipliers uncertain.
The results of these different stochastic optimum control experiments are compared to
each others and to the historical values of the control and endogenous variables.
Interpretations are given for the effects of uncertainty on optimal budgetary policies
and for the potential of improving policy performance by using optimization techniques
such as stochastic optimum control theory. We conclude that, contrary to popular
assertions, there is a considerable potential for welfare gains to be obtained by using
optimization methods for the design of economic policies, even and particularly in the
presence of uncertainty about policy effects. Some suggestions on how to exploit that
potential for the formulation of budgetary policies in Austria in the future are given.
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In the multiple depot vehicle routing problem (MDVRP), a fleet of heterogeneous vehicles with
known capacities originate from and return to depots with fixed locations, and service a given set
of nodes with known demands for service. The objective is to minimize the variable cost of
vehicles traveling to serve the nodes. The well-known vehicle routing problem (VRP), is a
special case in which there is a single depot. The VRP is known to be an P-hard problem. Thus,
computational effort for known exact solution procedures increases exponentially in problem
size.

Cluster-First/Route-Second heuristic methods approach the solution of multiple vehicle problems
by assigning nodes to vehicles in a first phase, then determining the sequences for each vehicle in
a second phase. Seed-setting methods are a particularly successful cluster-first/route-second
approach to the VRP. These methods utilize a set of geographical locations called seeds, one for
each vehicle, that model the nominal directions and distances from a depot that the vehicles
travel. The seeds are used to set parameters for a procedure that assigns the nodes to vehicles
without exceeding their capacities. Examples of such parameters include: i) the straight line
distances from node locations to the seeds, and ii)the extra distances incurred if vehicles
traveling to a seed and back deviate to serve the node. Using parameters such as these, a variety
of node assignment procedures have been developed, including generalized assignment integer
programming solvers and various heuristics. As the final step, a traveling salesman problem
(TSP) must be solved for each set of nodes associated with each vehicle. In the MDVRP, the
process of assigning nodes to seeds (vehicles) implicitly assigns the nodes to depots as well.
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Recent research has proven successful in employing genetic search to iteratively seek seed
location patterns that generate good solutions to the VRP. Genetic search is a general purpose
heuristic procedure that uses concepts of selection and inheritance to artificially evolve good
solutiQns, within a framework inspired by the genetics of biological systems. In a genetic search.
three items must be suppied - a representation of a candidate solution as an artificial
chromosome, a means of evaluating the filness of a candidate solution, and recombination
operators. In our application, an artificial chromosome consists of (x,y) coordinate locations for
seeds expressed in binary. Fitness evaluation is through generalized assignement integer
programming models and other methods that assign nodes to seeds, followed by a traveling
salesman heuristic. Recombination adjusts seed point locations through two-point crossover.
With this method, best-known solutions to'many well-known vehicle routing problems have been
generated. In this study, we extend the use of genetic search for seed setting to the multi-depot
case. Several heuristics were developed for assigning the nodes to seed points. Exact and
heuristic solvers for generalized assignment problems were developed and tested for this
purpose, as well as greedy clustering heuristics. Local tour improvement operators were devised
to modify the tours given by the TSP solver at each iteration. Both network optimization and
r-opt types of operators were effective in local tour improvement. In some of the experiments,
several node assignment heuristics were run at each iteration, and the best method was used in
the genetic selection process within the population. In essence, this provides several alternative
evaluation methods evaluation for each population member, a new technique that we call
multiple sharing evaluation functions.

The methods were experimentally tested on suites of test problems that are extensions of
problems from the literature, as well as on randomly generated problems. Problems with up to
250 nodes and 25 vehicles were tested on a DEC 5000/133 desktop workstation computer. A
visualization interface and statistical measures show that efficent routes are consistently
generated by the procedure. For problems with small numbers of depots, rough comparisons
with single depot solutions can be obtained. We determined that our procedure is competive
with known VRP solvers for such problems. Although the MDVRP is of high practical
importance, heuristics previously developed specifically for the problem are unsophisticated, and
our new methods produce much better results.

(*) Contact author
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Extended Abstract

1 Introduction

The order preserving assignment problem is the following variation of the classical assignment (or marriage)

problem: given an ordered list of n "items", p possible "positions- and integer "profits" ci for the assignment

of item i to position j find a profit-optimal assignment of items to positions that uses at most p contiguous

positions (starting with position 1) and that preserves the order of the list of items, i.e. the highest ranked

item Lhat gets assigned to a position is assigned to position 1 and so forth. Note, however, that we do

not require that any item be assigned to a particular position. We are merely requiring that (the straight)

"lines do not cross". Figure 1 shows an example of an order preserving assignment (OPA) for n = 4 and

p = 3 that uses two positions. We assume that the order of the items agrees with their indexing, i.e. item I
is the highest ranked item, item 2 the second highest and so on and, of course, that the profits are additive.

ITEMS POSITIONS

2 2

4

Figure 1. OPA with n=4 and p=3.

Since to every combination of j items out of n distinct items there corresponds exactly one order

preserv'ing assignment, it follows that there are exactly Ei=, (') OPAs for n items and at most p positions.
This is a substantially smaller number than the number of possible assignments (without regard to order and

contiguity) of which there are exactly Zoi j(Q) (F). However. the number of OPAs for reasonably sized n

and p puts the optimization problem out of reach for complete enumeration and - as small examples show -

simple greedy procedures do not solve the problem either. In section 3 of this paper, we formulaite the order

preserving assignment problem, give a minimal description of the problem in terms of linear inequalities,

show that a profit-optimal order preserving assignment can be found in strongly polynomial time and prove

that the diameter of the associated polytope equals two. In section 4 we derive the corresponding results

for the ease when all p positions must be assigned. In section 5 we show how to find a profit-optimal order

preserving assignment in linear time, i.e. in time that is linear in the number of variables of the problem,

for both cases that we consider. So, as far as assignments are concerned, "order and contiguity" reduce

*Supported in par by grants from ASFOR, ONR and the Alexander-von-Humboldt Stiftung.



439

the set of feasible assignments, do not bring down the diameter of the polytope (comparr to Balinski and

Russakoff (1972] for the classical assignment problem), but they make algorithmic "life" easier (compare
e.g. to Balinski[1983,1985], Kuhn[1955], Munkres 11957)). In section 6 we discuss two modifications of the
basic model. Throughout the paper we assume that the reader is familiar with the fundamental concepts of
graph theory, linear programming and the analysis of algorithms. For a survey of the polyhedral theory that
we employ we refer the reader to Gr6tschel and Padberg 119851. This note is a summary of the principal

results that can be found in detail in our paper [9].

2 Some definitions

The problem is defined on a bipartite graph G = (N,P,E) where N = n1.. ) , P = {1,...,p) and
1 < p < n. An edge of G is an ordered pair (k, t) E N x P and is denoted by a single letter (e, a,... etc.)
or by its defining pair of indices. We assume at first that G is the complete bipartite graph, but we will
redefine the edge set E after the following definition.

Definition I A subset A C E is an order preserving assignment (OPA) if

(i) for every k E N there is at most one a E A such that k E a.
(ii) for every t E P there is at most one a E A such that t E a.
(ii) if a = (k,t) E A and i > 2, then there exzists K E N, K < k such that (0,t - 1) E A.
(tv) if a = (k,t),b = (n, r) E A and a 6 b, then either k < K and t < r or

k > K and t >.

Properties (i) and (ii) ensure that A is an assignment, property (iii) ensures that positions are assigned
contiguously starting with position 1. whereas property (iv) ensures that the assignment preserves the order

of the items. It follows from the definition of an OPA that item k cannot be assigned to a position I > k.

Hence there is no need to consider edges (k,t) with t > k and thus the edge set E of G is given by

E = {(k,t)E N x P t < k < n, < t < p}.

We index the edges sequentially when necessary by

e = (t - l)n +j - t(t - 1)/2, (1)

where t <j < n and I <_t <p.

If A C E is an OPA and e = (k,t) E A, then we say that item k is assigned to position t. Let RE

(rather than RIEI) denote the space of real vectors of length [Ef. The support of x E RE is the index set
of the nonzero components of x. For A C E, we denote ZA = (zA ) E RE the characteristic vector (or

incidence vector) i.e.

A {1 ifeEA
1e= 0 if e VA.

We define the order preserving assignment polytope OPn to be the convex hull of the characteristic
vectors of all OPAs, i.e.

OP = conv ZAE I A c E is an OPA).

The order preserving assignment problem then 's the optimization problem

(OP) maxrcTrJ I z E OPpn).

We call an OPA exact if JAI = p. It follows from the definition of an OPA that in an exact OPA item
k cannot be assigned to position t if k > n - p + t, where I < t < p - 1, since otherwise there are not
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enough items left to be assigned. For the case of exact OPAs we are thus led to consider a bipartite graph
G = (N, P, D) where

D=E-{(k,t)In-p+t+l<k<n, _<t<_p-I).

We define the polytope of exact OPAs OP., to be the convex hull of the characteristic vectors of all exact
OPAs, i.e.

OP4 = cony (zA E RD I A C D is an OPA with JAI = p}.

Note that IDI = [El - p(p - 1)/2 and that OPC'p is clearly ,•ot full dimensional. We denote aff(OP,ý,) the
affine iullof the polytope OP;,. The corresponding optimrization problem over OP;- is denoted by (OP=).

A linear description of a polytope is a set of linear inequalities and/or equations whose set of solutions
equals the polytope. A linear description is minimal, if none of the inequalities and/or equatons can be
dropped from it without changing the solution set, i.e. every inequality defines a facet of the polytope.
Evidently, we are interested in finding minimal descriptions of the polytopes OP,' and OPt,.

3 Assigning at most p positions

We show first that OP." is a polytope of full dimension.

Proposition 1 dim OP' = IEI = np-p(p- 1)/2.

To formulate the problem we propose the following system of linear inequalities in zero-one variables
which on first sight has little to do with "assignments".

E iT 1: (2)
j=1

k+1 kE' xj.8+1 Ex_ i-zj < k <• n - I <_ t < p- 1 (3)

j=t+l j=t
zit E (0,1) t<k<n i<t<p. (4)

Inequality (2) states that at most one item can be assigned to position 1, while (3) expresses the condition
that if some items t + 1. , k + 1 are assigned to position t + 1 then at least that many items from t. k
must be assigned to position t where t and k are as specified. Inequalities (3) are intuitively not readily
understood and were obtained by calculating by computer all of the facets of OPp' for small values of n, p
and subsequent generalization.

Proposition 2 The system (2), (3) and (4) is a formulation of the order preserving assignment problem,i.e.
every solution to (2), (3) and (4) is the incidence vector of an OPA and vice versa.

Proposition 2 establishes, in particular, the validity of inequalities (2) and (3) for the polytope OPpn.
There are n(p - 1) - p(p - 1)/2 + 1 constraints of the form (2) and (3) and the question is whether or not
we need all of them. The following proposition shows more than that.

Proposition 3 Every inequality (2) or (3) defines a facet of the polytope OP,'. Moreover, the facets defined
by (2) and (3) are all distinct.

The inequalities (2) and (3) are certainly not all the facets of OP1 as we will need nonnegativity as
well. However, inequalities (3) for k = t read z,, > zgl+g,+. and thus we are lead to consider

zpp_>0, ztŽ0 for t+l<j:_n, l<t<p. (5)
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Proposition 4 The inequalities (5) define distinct facets of OPP'. Moreover, these facets are distinct from

the ones given by (2) and (3).

Theorem I OP' = {z E Rslx satisfies (2),(3) and (5)} for all I < p < n. The linear system (2), (3) and
(5) is a minimal descnriton of OPn and the constraint matrix given by (2) and (3) is totally unimodular.

Sketch of Proof: Consider the JEl x JEJ matrix T given by the transformation

k

YL,=Exjt for t<k<n, I <t<p. (6)

The matrix T is nonsingular and the inverse transformation T` is given by

X11,=-y(I t = l1,... , p (7)

Zkt=-ykt - yk-,t t+I <k<n, I <t<p. (8)

Applyir.g the transformation (6) to inequalities (2), (3) and (5) we lind

Yk+,9+i -YYk _< 0 t < k < n-- , I•t<__p-- (9)

Yk-i,,--Ykt < 0 t+I<k<n, 1<_t<_p (10)

-ypp < 0
Yn, _ 1 (12)

The matrix corresponding to the constraints (9). (12) is totally unimodular. Consequently, all the extreme
points of X = {z E R' I x satisfies (2), (3) and (5)) are zero-one valued and hence, by Proposition 2,
X = OP". It follows that the linear system (2), (3) and (5) is a linear description of OP'. By Propositions
3 and 4 we have its minimality. The total unimodularity of the constraint matrix given by (2) and (3) is a
consequence of the total unimodularity of the matrix T of our transformation and the total unimodularity
of (9),...,(12), see e.g. Cook [1983]. 0

11 21 31 41

22 32 42

33 43

Figure 2. OPA network for n=4 and p= 3 .

The proof of Theorem 1 suggests a "reformulation" of the order preserving assignment problem in terms
of variables ykj, where

{ I if one of the items t,..., k is assigned to position t
Ilk, = 0 if not

and t < k < n, I < t < p. The constraints (9) and (10) can then be interpreted accordingly, while
constraints (11) and (12) ensure that all variables assume values between zero and one. More precisely, the
optimization problem (OP) can be written as follows:

maz{c T z I x E OP,}) (13)
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=max crz I z E WE, z satisfies (2), (3) and (5)) (14)

= mazfdTY I Y E WE, y satisfies (9) ...... (12)} (15)

where the vector d has components d., = ct,, dkt = cke - cL+I,z for t < k < n - < 1 < <p. Any optimal

solution to (15) is translated to an optimal solution to (OP) via (7) and (8).

Corollary 1 Problem (OP) can be iolved in strongly polynomial time.

Let Y be the image of X under the transformation (6), i.e. Y = {y E REly satisfies (9),.-.(12)).

Denote H = (E, F) the OPA network associated with the linear program (15) where the nodes E of H
correspond to the edges of the graph G, the arc set F is given by (9) and (10) and rather than having edge
weights we have the node weights defined above. We define a cut (S : E - S) in H to be feasible if S = 0 or

S = E or ifg 0 SC E then (i) (n, 1) E S, (p,p) S and (ii) for all arcs a = (h.,t.) E (S :E -S) h. S,

t. E S, where ha stands for "head" ard t, for "tail" of the arc a. The "tail" t. of an arc a corresponds to

a "minus", the "head" h. to a "plus" in the corresponding inequality (9) or (10). Furthermore, for S C E

we denote Hs = (S, Fs) the sub-network of H with nodes in S and all arcs of F having both endpoints in
S. To prove the following we use repeatedly the fact that the incidence matrix of a tree with k > 1 nodes

has a rank of k- 1.

Proposition 5 Every feasible cut (S : E - S) in H defines an extreme point of Y and vice versa.

The linear program (15) thus consists of finding a maximal weighted feasible cut in the network H where
the weight of a cut (S : E - S) is given by 'EES d.

Two extreme points yl 4 y2 of a polyhedron P are called adjacent if the face of minimal dimension of

P that contains both yp and y2 has a dimension of one. For any two extreme points y' 7 y2 of P denote
d(y, y2 ) the smallest number of faces of dimension one of P that - in a simplex-type algorithm - must

be "traversed" in order to get from yl to y2 . The diameter of a polyhedron P denoted diam(P) is the
maximum of d(V1 ,y 2 ) over all pairs of extreme points y' and 0 of P.

Proposition 6 Let yo, y, be the two extreme points of Y corresponding to S = 0, S = E respectively.
(j) yo and y' are adjacent on Y and every other extreme point y of Y is adjacent to both of them.
(ii) Two extreme points y2 6 y3 of Y, both different from yo and yl, are adjacent if and only if S C T and

IJT-S is connected or T C S and Hs-. is connected where S = {(k,t) E E I yk, = 1} and T = ((k,t) E
E I, =1).

(iii) diam(Y) = 2 for all n > 3 and p >. 2.

For any order preserving assignment A C E let PA be the last position assigned by A. A = 0 is called the

trivial and A = {(1, 1).(p,p)} the canonical OPA. An OPA B dominates the OPA A if PB ? PA and

there is a position 7r such that for every (k, t) E A there exists h < k such that (h, t) E B for all 1 < t < 7r

and for all x + 1 < t < PA (k,t) E A implies (k,t) E B where 1 < r < PA. Note that the canonical OPA
dominates all (nontrivial) OPAs. We say that two OPAs are adjacent if their incidence vectors zA, ZB are

a pair of adjacent extreme points of OP,".

Theorem 2 (s) The trivial and the canonical OPAs are adjacent and every other OPA is adjacent to both

of them.
(ii) Two nontrivial, noncanonical OPAs A and B with PA <_ p9 are adjacent if and only if B dominates A.

(iii) The diameter of OP•' equals two for all n > 3 and p >_ 2.

The proof of Theorem 2 follows directly from Proposition 6 since the transformation T given by (6) is

nonsingular and by interpreting the condition for adjacency given by Proposition 6 on the bipartite graph

G =(N,P,E).
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4 Assigning exactly p positions

To deal with the problem of assigning exactly p positions in an order preserving manner we use zero-one
variables zi, as before, but here < < j _v n - p + t and I < t < p as we are working in a lower-dimensional
space. The exactness of the assignment implies that every zero-one vector z E R' that is the incidence
vector of such an OPA satisfies

n-p+t -

E Ij - I < _t < p . (16)

J=9

Proposition 7 dimOPýp = IDI - p = p(n - p) and afJ(OP,•) = E 4ZD zsatisfies (16)}.

Consider now the inequalities

k+I k

E ,'+,< , t < k< n-p+t-I , 1< t _<p- i (17)
Ji - t" 1 .=t

Xpp>_O, x,_p+z,,z->O0, x,,, >0 t+lI < j _n -- p+tI- , I I< t <p (8

Theorem 3 OPp = {z E (R' .r satisfies (16). (17) and (18)} for all 1 < p < n. Moreover, the linear
system (16), (17) and (18) is a minimal description of OPp if p < n.

Corollary 2 The inequalitzes (17) and (18) define distinct facets of OP,• and every facet of OPp is
defined by one of the inequahties (17) or (18).

As the polytope OP,ý is not full dimensional, there are, of course, many different linear descriptions
of OPp which are all equivalent modulo linear combinations of the equations (16) and multiplication by
positive scalars. With respect to the optimization problem (OP=) over the polytope OPp we show mutatis
mutandis the following corollaries.

Corollary 3 Problem (OP=) can be solved in strongly polynomial time.

Corollary 4 The diameter of OP,- equals two for all p >_ 2 and p + 2 < n.

5 Finding optimal assignments

The dual to the linear program (15) is a minimum cost flow problem on the OPA network having a particular
objective function. In fact, rather than calling our problem a minimum cost flow problem we shall fefer
to it as a minimal flow problem. We utilize this structure to give fast algorithms for the problems (OP)
and (OP=). The basic idea of our approach is to solve (15) by reducing the overall problem to a sequence
of p smaller problems. An optimal solution to (OP) is then obtained using the duality theorem of linear
programming. The case of (OP=) is similar.

Denote vki, uk, the dual variables associated with constraints (9) and (10) and vp, u,+i, those associ-
ated with the constraints (11) and (12), respectively. At a typical node (k, t) we have the "flow' situation
as illustrated in Figure 3. Consequently, the flow conservation equation at node (k, t) is given by

-- uht+uk+,t+vt-.t- vkt = dht t < k < n . I<_tp, (19)

where at the "border" of the OPA network certain nodes do not exist, for instance the nodes (k, 0) for
i = 1 and 0 < k < n - 1. We model the corresponding variables anyway and require them to be zero in
feasible solutions and the remaining ones to be nonnegative.

U11 = uf = u.+i,, = V.,t-i = 0 2 < t < p (20)
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v 0o=O O<k<n-l, vkp=O p+l<k<n (21)

ur+i~i O,ULg u O, VktO t <k <n l<t<p. (22)

vk- 't- i

Figure 3. Flow at node (k,t).

The minimal flow problem that we have to solve is given by

mnin u,+,1

(IVET)
subject to (19). (22).

For 1 < q < p we denote (NETq) the following relaxation of (NETp):

mitin u+1,

subiect to

-uki +Uk+Ii +V&-I i1l -- Vtt = dkj t < k <n n < t< q (23)

(NETJ) U1 1 = ut = u,+1 J = v,-1. = 0 2 <_ t q (24)

vnq=vkO = 0 O<k<n-1 (25)

un+ll>>0,Uk_, v 2! 0 , > 0 t<k<n l<It<q. (26)

(NVET7) is thus a minimal flow problem on the partal network given by the nodes (k,t) with t < k < n,
I < t < q and the nodes (q + I,q + 1),.,(n,q + 1) for which we have, however, no flow conservation

equations and thus no demands dk,q+,. Rather, the variables v,,...., .are "surplus" variables in the

problem (NET,). For notational convenience we write a feasible solution to (NET,) in vector form (ul, v0)

where we use the following indexing of the components of ut

t' = (Uni., iUl - n1, ..... ., U22,U.nf. Uf,) (27)

and likewise for v9 where I < q < p. The "flow value" ut4+4 1 , is kept separately from the vectors. Note that
the sequential indexing of u and v is not by increasing sequential index (1). It follows that if (u4 +t, v'4 +') is

a feasible solution to (NET,4+1 ), then the "truncated" vector (u, v), say, that is obtained from (ufl+, vf+i)

by suppressing the n - q last components in uf4+1 and vfl+', respectively, defines a feasible solution to

(NET,). Among the optimal solutions to (NET,) we want to single out a particular one. We recall that a

vector z •_ R?" is lezicographically greater than y E R" if xi = Yi for i = 1..., k and zx+1 > yt+i for some

0 < k < n -.
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Definition 2 An optimal solution (u0, v) to (NET7) is called lex-max if the vector vf = (v' t,..., vO, vf 2 .

... A ......, Vnq,...., vf4 ) is lexicographically maximal among all optimal solutions to (NET,) where I < a <

p.

Proposition 8 Problem (NET,) has a unique let-max solution for I < q <_ p.

Proposition 9 A feasible solution (uf, vr) to-(NET,) is let-max if and only if

uk+,,v'=0 t <k<n-2 1<t<q. (28)

Proposition 10 If (uf, v9) and (ut+', vq+') are lex-max solutions to (NET,) and (NET7+ ), then

kt u t<k<n- , l<t<

"V!+1 !, t<k<n-2, I <Vt < q (30)

q+1 >uf v f+i q I<t < (31)
n --- n n-l, 9 -- Vn--,4 (

To formulate a procedure that finds a lex-max solution (ul+1, vq+) to (NETq+l) given a lex-max

solution (uq, v') to (NET,) we need the following two auxiliary problems. In the first problem we want to

find a lex-max solution (u, v) which solves the problem

min u,+t

(Pq+t) subject to -uk+uk+i-vk=dk q+lIk<k<
u9q+1 = V. =- 0 , Uk , Vk ? 0 ,

i.e. a solution such that the vector v = (v,,.. ., v,q+) is lexicographically maximal among all optimal

solutions to (P,+,). The second problem is to find an optimal solution u which solves the problem

min Un+1

(P2) subject to -uk+uk+1=dk, uk >0 p<k<n.

In the following procedure u, v and d are assumed to be vector arrays of sixe IEl that are indexed as in

(34) and the arrays D, U, V are of size n + 1 and are "local" variables. Instructions that are separated by

a colon are to be interpreted sequentially (left to right). "FLO" is the flow value ui,+I,1.

Procedure LEXMAX (n, p, q, u, v, d, FLO)

Input: (uq,vf) a let-max solution to (NET,) with flow value FLO, dk,q+I E Z

forq+ < k < n and0 < q <p.
Output: (uf+', v0 1 ) a let-mar solution to (NET,+,) with flow value FLO.

Step 1: ifq = 0 then
do fork= I ton

Dk := dki

enddo

FLO := 0

else

dofork=q+ I ton
Dh "= dk,q+l - Vkl,q

enddo

endif
Step 2: ifq + I < p then



446

call procedure PI(n, q, D, U, V)
else

call procedure P2(n,p, D, U, V)
endif

Step3: dofork=q+l ton
uk~q+l := Ut ; Vk~q+l := Vk

enddo
do for t = I to q

Unt := tnt + Un+I ; Vn--,1 := Vn--,t + Un+I

enddo
FLO= FLO+ Un+ 1

return.

The procedure LEXMAX reduces the problem of solving the minimal flow problem (NETP) to a sequence
of optimization of problems (P,+,) for 0 < q < p - 2 and one optimization problem (P2), all of which can
be solved fast by the following two procedures.

Procedure P1 (n,q,d,u,v)

Input: dk E Z for q + I < k < n.
Output: a lez-maz solution (u, v) to (P,+,).

uq+1 :• 0
do for = q + 1 to n - 2

ui+:= max 0, di+uJ ;vi :=u+- ui-di
euddo
u, : max {0,-d,d -I + u.-.} vn- =un - un-1-d,-i

Un+1 := d, + un ; vn := 0

return.

It is a routine matter to check that procedure PI returns a feasible solution (u, v) to (P,+,). Moreover.

uj+1 > 0 implies vi = 0 and v, > 0 implies ui+j = 0 in the solution for q + 1 < i < n - 2. Since (P,+,) is
the problem (NET1 ), except that we have fewer variables, Proposition 9 applies with the necessary changes
and thus the solution returned by procedure PI is lex-max. Procedure P1 requires O(n - q) time.

Procedure P2 (n, p, d, u, v)

Inpu•: dk E 2 forp < k < n.
Output: an optimal solution u to (P2) and a vector v.

U~P :=-0

do for j = p to n
u+l =uj + dj ; vj :=0
if -uj+l > up then up := -uj+j

enddo
doforj=p+ I ton+ I

Ui := uj + up

enddo

Vp := Up ; up := 0
return.

The interchange of v, and up is done in procedure P2 to facilitate the updating in the procedure
LEXMAX. With up = v, the solution returned by procedure P2 is feasible for (P2). To see that it is
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optimal eliminate all variables except up. The remainder is a trivial linear program in the variable up with

the value as given in the procedure. Procedure P2 requires O(n - p) time.

Proposition 11 Procedure LEXMAX returns a iec-maz solution to (NET,+,) in O(n) time and a ter-mar

solution to (NET,) can be found in O(np) time.

We are now ready to formulate an algorithm that solves (OP). In the following algorithm we assume

that u, v, c and d are arrays of length JEl, w is an array of length p and that the rest are scalars. All

auxiliary arrays and soilars are initialized at zero, the user supplies the data n, p and c E ZE and provides

his own output statements.

Algorithm OPA (n, p, c)

Input: nE.g/,pE EK, I <_p _n, cE ZE.

Output: an optimal solution vector z for (OP).

Step 0: dofort= I top

dnt :_= ct

do for k = t to n - I
dl := ickt - Ck÷Ig

enddo

euddo

Step 1: doforq=Otop-I

call LEXMAX(n, p, q, u, v, d, FLO)

encdo

if FLO = 0 stop.
q :=I

Step 2: if u., = 0 go to Step 3 ; if v_.1 ,, = 0 go to Step 3; q :=q+1 ; if q < p go to Step 2

Step 3: t:=q+1 ;w,:=n+I

Step 4: t :=t -I if t =0 go to Step 6 ; tw:=w+

Step 5: we :=; w - 1 ; if u.,, = 0 go to Step 4 ; go to Step 5

Step 6: do for t = to q

enddo

stop.

Theorem 4 Algorithm OPA finds an optimal order preserving assignment in O(np) time.

We obtain an algorithm for (0P=) by slightly modifying the algorithm OPA and thus the corolary.

Corollary 5 Algorithm OPA finds an optimal solution to (OP=) in O((n - p)p) time.

6 Some extensions

Suppose that we would like to include a cost of using a position, but that we otherwise insist on order

preserving assignments. So let z' = I if position t is used, z, = 0 otherwise, and fe be the cost of using

position t, where I < t < p. Then the linear programming formulation for costly positions becomes

p n P

mar Zjc&,x&,-F'=Zf x
9=1 k=9 t=1
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n

subject to (2), (3), (5) and Ezi i zi fort = ,. p.
j=8

One proves the implicit assertion that all extreme points (z, z) of this linear program are zero-one valued

by showing that for all integer c E ZE and f E ZP the objective function value is an integer number. To
do so, it suffices to eliminate the variables z, from the problem and to reduce the above problem to (OP)

with a changed vector c. Of course, by Proposition 2 the z, variables will be either zero or one. So. in

particular, there is also another prool by discussing feasible bases for the problem and using Theorem 1.

Another variation that we have considered is the following. Suppose we want an order preserving
assignment such that at least one of the q first items gets assigned to position 1. One proves by the

methods of Section 3 that intersecting OPn with the single constraint E=, xjI = 1 does the job, i.e. the
resulting 1ioiytope has zero-one valued extreme points only. Of course, the variables z,., -. z,, must
be zero in every solution and can be dropped from the problem- It is also not difficult to determine a
minimal description for the resulting problem. If we intersect OPP" with several constraints of the above or
a similar form we can, of course, not expect to get a polytope with zero-one extreme points only.

Note: Following the presentation of the original paper at the ORSA/TIMS Joint National meeting in Oc-
tober 1991, Maurice Qeyranne (University of British Columbia) and independently, Arie Tamir (Technion.

Tel Aviv) have found direct "combinatorial" algorithms - based on dynamic programming - for the solution
of the optimization problem (OP) that have the same running time as the algorithm proposed by us.
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In this report we are concerned with the numerical solution of the non-

linear min-max problems using smooth penalty functions. The min-max

problem is stated as follows:

min max f1 (x) (1)
xIR" iEM

where the f, : Rn -, are continuously differentiable functions and M =

{1, ... , m}. The min-max problem is known to be equivalent to the follow-

ing nonlinear program:
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[MINMAX]

minimize z
X, z

subject to fi(x) < z V i = 1,...,m

We propose to compute an approximate solution to problem [MINMAXI

by solving the following problem:

[MINSEP]
m

min z +, (f(x) - z) (2)(x,z) i=1

where f is a smooth penalty function and jL is its controlling parameter.

We consider two choices of the penalty function f: (1) A linear-quadratic

penalty function

0 ift<0
0 if 0 < t < C (3)

2 if t>

and, (2) A linear-logarithmic penalty function

S0 if t <0

= (t + a)[l(t-+-) - 1] + a if 0 < t < E. (4)

t t-(E-a) if t > E.

The penalty functions (3)-(4) can be obtained as smooth approximations to

the 4t penalty function

r(t) = max{O,t}. (5)

We note that the penalty functions (3)-(4) have continuous first derivatives

whereas the ti penalty function does not. The parameter E controls the

accuracy of the approximation. We give the following definition before we

proceed:
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Definition A vector (i, Z) is c-feasible if

fi (I)<-I-+C V i= 1,...,m.

We established in [5] that the threshold value of the penalty parameter JL

required in order to achieve e-feasibility is a function of the maximum of the

Lagrange multipliers to the original problem. However, the Lagrange mul-

tipliers associated with the inequalities in problem [MINMAX] are in the

interval [0, 11. This fact is readily verified from the first order Karush-Kuhn-

Tucker optimality conditions for [MINMAX]. As a result of this observa-

tion in an iterative scheme where the solution of problem [MINMAX] is

approximately obtained by solving a finite number of penalty problems one

can start with a value of it in the range [0, 1]. This property enables one to

alleviate the problems associated by forcing too much ill-conditioning on the

penalty problem from the beginning. We construct such an iterative scheme

below to solve mir-max problems by means of unconstrained minimizations.

To start the algorithm, an initial point (io, z0 ) is needed and initial values

ju0, co for the penalty parameter A and the smoothing parameter E need to

be specified. We consider the following iterative steps:

Step 1 Using the violation (4, 4) as the starting point for evaluating

the penalty function solve the problem [MINSEP]. Let (frk+i, 4+1 )

denote the optimal solution.

Step 2 If (-ik+1, k+l) is E-feasible and E < Efin terminate. Otherwise,

update the penalty parameter #i and and the accuracy parameter C,

set k 4- k + 1 and proceed from Step 1.

The parameter 1 in,, is a final infeasibility tolerance. At Step 2, we update

the penalty parameter i and the smoothing parameter c as follows:

Ck+1 = 171 max ck
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and

14+1 = -121Lk

where 77, = 0.1 and 172 = 2.0. The above choices were found to work best

throughout the computational tests performed. Obviously the effectiveness

of the iterative scheme is contingent upon the success of the unconstrained

minimizations in Step 1. We use a modified Newton method due to Gay [2]

to solve the penalty problem. The modified Newton algorithm iterates by

computing an optimal locally constrained step with a trust region on the

step. It uses a finite-difference estimation of the Hessian. It is available as

a subroutine in the IMSL Library.

We summarize our computational experience using a test problem from

[3].
min max fi(x)

X

with

2f2 (x) = I +X2"+X "+ Xn-
'2 (X) X, Xl - --2-- .. b ,

fi~) zl+ 2 + X3 + + Xnf3(x) , + x ,

fi(X) X _ I +X2+X !2+ +
2 ieven

fj+,(z) = zI + X + 3 +... + 2x 2 + + Xf 1 1
2

fm(X) = +X2+X3+..+X-

where m = 2n-2, n even. We have run the example with n - 4, 10,20,30,40,60,70,

and 80.
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This problem was chosen to test the behavior of the algorithm on problem

with many variables and functions. We also solved some of these problems

using (1) The nonlinear programming software MINOS 5.1 of Murtagh and

Saunders [4] to verify the accuracy of our solutions, and (2) The recently

developed nonlinear programming software Lancelot of Conn et al. [1]. The

results are reported in Table 5. The starting point in all runs was taken to

be (10, 10,...,0).

(n, m) LQP MINOS Lancelot

IIMIT I NITLI F LNGI NH LNF 11 NF[ING 1
(4,6) 4 33 59 37 33 NA 50 44

(10,18) 4 43 81 47 43 96 196 166

(20,38) 3 27 54 30 27 175 288 247

(30,58) 3 43 69 46 43 249 288 249

(40,78) 3 39 81 42 39 NA 362 349

(60,118) 3 40 82 43 40 NA 465 418

(70,138) 3 41 98 44 41 NA 533 478

(80,158) 3 25 68 28 25 NA 656 581

Table 5: Solution Statistics for the Minimax using the Linear-Quadratic

Penalty (LQP), MINOS and Lancelot. (MIT = Number of Penalty Mini-

mizations, NIT = Number of Newton Iterations, NF = Number of Function

Evaluations, NG = number of Gradient Evaluations, NH = Number of Hes-

sian Evaluations, NA = Not Available)

We note that all three codes were run with default parameters. We do

not report the solution computed by the LQP algorithm since we find that

we have on the average four digits of accuracy with respect to the MINOS
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solution. The accuracy of the solution reported by Lancelot is controlled

using the parameter gradient-tolerance. In our experiments its value is

set to 10-3
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The objective of the Environmentally Sensitive Investment System

(ESIS) Project is to provide industry, as well as government departments

and agencies, with possible means to assess the environmental and

economic implications of capital-intensive projects and policies. More

specifically, ESIS helps to find wastewater management alternatives that

meet stated environmental regulatory standards in a technologically

sound and cost-efficient manner. The use of this intelligent decision

support system will enhance the ability of managers and planners to

explore the quantitative implications of a wide range of options.

ESIS incorporates a combination of artificial intelligence, expert

system and operations research techniques, database management and

graphic presentation tools, integrated into a user friendly, dialog and

menu driven software system. ESIS is targeted primarily for top-of-the-

line personal computers and, possibly at a later stage, for workstations.

Keywords: environment-economy integration, intelligent decision support

systems, pulp and paper industry, waste management.
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1. Introduction

Major industries - such as mining, chemical production, pulp and paper

manufacturing, food processing, etc. - typically have a significant

negative impact on the ambient environmental quality. These industries

face a aerious challenge (expressed by a growing public concern and more

stringent environmental legislation) to find efficient methods of waste

treatment and disposal, while acting under the financial constraints of

market realities.

RSIS, the Environmentally Sensitive Investment System, is designed to

provide quantitative assistance in this complex decision making process.

Specifically, ISIS assists in selecting wwste water management options

that meet jointly considered technical and economic constraints, as well

as environmental regulatory criteria in an efficient manner. With the

help of ESIS, senior industry and govermnent decision makers will be

able to systematically analyze and compare strategic investment and

operational choices in an interactive, computer-assisted environment-

Although the ESIS prototype is initially focused on the economically

mature Canadian pulp and paper industry - more precisely, mechanical

13ulping (ThP/CTtP) mills - its &oader conceptual relevance is evident

with respect to a number of capital-intensive industries that have a

potentially large, negative environmental impact. Several possible

extensions and generalizations of the prototype system will be

highlighted later.

The ESIS Project is supported by a consortium of industry, consulting,

research and government partners which represents a range of interests,

expertise and a variety of multi-disciplinary professional assistance to

the Project.
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2. Environment-Economy Integration: The ESIS Model Structure

As stated above, ESIS will be a quantitative decision support tool that

assists in finding harmonized economic-environmental policies- This

objective is reflected by the generic system scheme shown in Figure I:

waste management in the pulp and paper industry can be considered as one

of its possible realizations.

Figure 1 indicates that there are several system components which allow

for implementing diverse types of management and control options.

Because of the adopted scope limitations of KSIS, a particular emphasis

is placed on the selection of technologically feasible, environmentally

satisfactory and economically efficient waste water treatment

alternatives. An attempt is, however, made to include - at least on the

level of quantitative sensitivity analysis - some other management

opportunities: plan modifications, material recycling and reuse options,

non-standard waste treatment and disposal practices, and adaptively

chosen environmental regulations (effluent quality standards).

3. Waste Water Treatment Engineering System Model

The waste water treatment systems considered in the ESIS prototype are

determined by a given configuration of unit operations applicable to

mechanical pulp and paper mills. Figure 2 depicts the scheme of an

investigated treatment system.

The following unit treatment processes (UTP's) are included in KSIS

(their role will be briefly described in the full version of the paper):

- primary clarifier

- spill basin

- equalization basin

- activated sludge treatment
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- aerated lagoon

- secondary clarifier

- sludge mixer

- sludge thickener

- sludge dewatering

For each UTP, a quantitative steady-state description ban been developed

which makes possible the formulation of a corresponding mathematical

system model of complete treatment configurations. The input of this

system is basically determined by the pulp and paper manufacturing

process which results in a given production level and corresponding

generated raw waste stream. The output (treated) waste stream affects

the spatial and temporal evolution of the ambient environmental quality.

In the ESIS prototype four selected basic waste water treatment

configurations can be investigated. The pollution removal efficiency and

cost of each UTP are governed by choosing a few (2-6) principal design

variables and operational characteristics. Rence, finding feasible or

,best investment and operational decisions necessitates the simultaneous

choice of several tens of decision variables.

4. Analytical Optimization Model Formulations

Environmentally sensible planning. means the integral consideration of

multiple (partially conflicting and non-commensurable) objectives,

criteria and aspects, which include those of engineering (technical

feasibility), economics (cost-efficiency of design and operations) and

environment ("satisfactory" quality, sustainable development). This

inherently "soft" problem structure excludes the possibility of finding

a unique best representation, as reflected by a single mathematical

programming model. Therefore the verbal problem statement below is
only a possible formulation of the basic ESIS paradigm.
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ESIS Optimization todel Frame

OBJECTIVE

(find the most cost-efficient combination of unit waste water

treatment processes }

STATE EQUATIONS AND CONSTRAINTS

(production process driven initial conditionsa

(input waste stream characteristics)

(explicit ranges of decision variables: waste water treatment

equipment types and sizes}

(explicit ranges of decision variables: basic operational

characteristics of UTWP's}

(implicit technological constraints and relations between UTP's}

(analytic description of the waste water treatment processf

(implied resource (construction, operation and maintenance) demands

of the waste water treatment system)

(resulting effluent and solid waste stream}

(effects of waste output on environment)

(environmental quality standards)

The concrete numerical realization(s) of the above optimization paradigm

typically involve several tens of decision variables and constraints,

plus hundreds of constants and parameters. In addition, essential model

features include complicated ("black box" like) structure, nonlinearity,

absence of analytical derivatives of a number of implicit constraints,

significant uncertainties and fluctuations (stochasticity) of system

behaviour, and - as a direct consequence of the above facts - computa-

tionally intensive evaluation of the engineering system optimization

model. In the terminology of mathematical programming, even the determi-

nistic base model versions can merely be classified as (potentially)
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multiextremal Lipschitz optimization problems, with no obvious possibi-

lity of directly justifying a more narrow model-class. Summing up these

observations, the exact finding of the (mathematically) optimal deci-

sion, or better, of a "menu" of alternative efficient decisions, typi-

cally leads to complicated optimization issues.

5_ Solution Approaches

Given the spectrum of targeted applications (from obtaining fast, pre-

liminary evaluation of system performance to detailed analysis and "fine

tuning"), ESIS offers a number of tools that can be applied to form-

ulate, investigate and solve system models of diverse levels and depths.

These techniques include

- knowledge-based reasoning and spreadsheet calculations

- nonlinear programming model versions and optimization techniques

- statistical uncertainty analysis and stochastic model extensions

The solution approaches listed above are capable to provide response

pertinent to a large variety of problem statements. The information

obtained in the different search modes is coommicated to the user via a

dialogue-based, seamless interface which also enables the adaptive.

sequential application of the solution techniques. (Illustrative test

results obtained by applying these solution approaches will be provided

in the full version of the paper.)

6. Implementation Aspects

The combination of optimization, statistical analysis, expert system,

database management, and visualization concepts and techniques is

realized applying a modular approach. This structure makes possible the

adaptive decomposition, aggregation and substitution of the KSIS
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software components. (The parallel testing of different development

versions still continues.) The current prototype implementation runs on

top-of-the-line personal computers (IBM PS/2 386 and 486 machines)- A

workstation (IBM RISC 6000) development is being proposed for a sub-

sequent stage.

7. Conclusions and Further Research

The increasing concern for environmentally responsible waste management

indicates that the ESIS concept and its implementation have remarkable

potential. The immediate future work includes additional testing and

improvement of the prototype, and further contacts with pulp and paper

mill personnel, suppliers and equipment manufacturers, in order to

obtain additonal, site-specific information. This work will also be

related to supplementing ESIS with in-plant process modification options

and novel waste treatment/disposal/processing/use techniques-

The currently active features of ESIS include an information base on

environmentally sensitive planning (in the context of the pulp and paper

industry); feasibility analysis of (pre-)selected management options;

preliminary screening and optimization of treatment configurations;

quantification of system uncertainties and fluctuations; statistical

verification (ex-post analysis) of selected management options; and

report writing (executive summary and detailed technical report levels).

Possible future extensions and generalizations can lead to site-specific

implementations of the ESIS concept; refinements of the environmental

impact analysis; adaptation of the ESIS concept to other industries; and

educational/professional training versions.

(Acknowledgements, appendix and an extensive reference list will be

provided in the complete version of the paper.)
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Abstract: In interior point methods it is generally not possible to achieve a vertex optimal solu-

tion for degenerate linear programming problems. Two of the most popular methods for

attempting to achieve a vertex (near) optimal solution are the method of random perturbations

and the method of controlled random perturbations. When a basis needs to be recovered in addi-

tion, there is need for a number of Gaussian elimination steps which depends on the degree of

degeneracy. In this paper, an alternative method to force a vertex solution using the dual affine

method is presented. The dual affine method is an interior point method which is computation-

ally efficient but not commonly used when a basis needs to be recovered. The proposed method

uses a quadratic auxiliary function based on the properties of convex sets and does not require

any random perturbations. Results from test problems are presented and compared with an exist-

ing method.

1. INTRODUCTION

Interior point methods are now proven to be computationally efficient for many classes of large

linear programming problems, Lustig et al. (1992). However, for degenerate linear program-

ming problems the solution from interior point methods converge to a relative interior of the

optimal face providing an optimal solution with a minimal number of zero coordinates in the

solution. When compared with this solution, a basic (vertex) solution available from simplex

method has a maximal number of zero coordinates, a solution which may sometimes be more

favourable for certain operational reasons. In addition, for some integer programming problems

as well as, for the reasons of sensitivity analysis, parametric programming, and for providing

warm starts in some nonlinear programming algorithms, it may be necessary to have a basic

optimal solution. The primal-dual interior point methods are usually favoured for recovering a

basic solution, Megiddo (1988) and Mehrotra (1989). However, there have been successful
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attempts in using the dual affine rnethod for basis recovery as well, for example, in Ponnarn-
balam and Vanneili (1989), and Ponnambalamn, et aL(1992).

Basis recovery procedure is expected to be more efficient if a vertex solution is available at least
"for either the primal or the dual or- preferably for both. In addition to achieving a vertex optimal
solution, when the basic set has to be determined it is necessary to perform an uncertain number

of Gaussian elimination steps which depend on the degeneracy of the problem. The two
methods that are popular for forcing a vertex solution using interior point methods are (i) pertur-
bation method, for example, as in Ponnambalam and Vannelli (1989), and (ii) controlled pertur-
bation method of Mehrotra (1989). Both methods depend on random perturbations and there is
some uncertainty as to the effectiveness of these methods in achieving a vertex optimal solution.
In this paper, we use a recently proposed method of Ponnambalam (1992), wherein, a quadratic

auxiliary function is used to encourage a vertex solution using a dual affine method. In this pro-
posed method, a bidimensional subspace is determined based on maximizing an auxiliary func-
tion which, in addition to the original objective function, includes terms for favouring a vertex

optimal solution whose 2-norm squared has the maximum value in the optimal face. Test results

are presented for comparison.

2. Linear Programs and Degeneracy

Let the primal linear programming problem be in the standard form

(P) midn (cTx : Ax = b, x >O (0)

where, A is an mxn matrix, b and c are m- and n- dimensional vectors, respectively, x is

n-dimensional vector and assume that rank(A) = m. The dual of the linear program (P) is

(D) max(bTy ATy+s=c, s>0) (2)

where, y and s are m- and n- dimensional vectors, respectively. The pair of primal (P) and dual
(D) problems is called primal degenerate if there exists a primal feasible x with less than m
positive coordinates, and dual degenerate if there exists a dual feasible s with less than n--m

positive coordinates, Gailer et aL (1991). At this tine it is worth noting that, in the case of inte-
rior point methods and when a vertex optimal solution is required, the main concern is degen-

eracy at the optimal face, unlike in the simplex method, where degeneracy is of no serious con-
cern once the optimal vertex is reached. In this paper, we propose to use the dual affine method

of Dikin (1967) and Adler, et aL (1989), on the dual problem (D) where due to dual degeneracy

the optimal solution is in the interior of the optimal face. We do not attempt to overcome the
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primal degeneracy in the proposed algorithm as it can be resolved best during the Gaussian elim-
ination steps.

3. Vertex Solution using Dual AftIme Method

For the following sections we will use the inequality form of the dual problem.

(D) max [bTy : ATy < c) (3)

Using Proposition 1 we form an auxiliary function and solve a new optimization problem that

will provide a vertex solution for the dual problem.

Proposition 1: In linear progrmming problems with dual degeneracy, there is at least one
optimal vertex solution y* with the following condition:

Iy"l12 > Iyli2 , for all y in the optimal face.

Proof. This property follows from the property of the convex hull that defines the feasible region

in the Dual (D).

Therefore, to obtain a vertex optimal solution of the Dual the following problem needs to be

solved. Solve

max( yTy : A Ty < c , bTy > z] (4)

where z* is the solution of the dual problem in equation (3). Although at the outset the Problern
in equation (4) looks like a hard problem, we show how the dual affine algorithm con 1r modi-

fied to solve the problem with minimal additional effort.

Algorithm

Let y0 and Y be given such that ATy0 < c andy = 0.9.
Setk :=0
While stopping criterion is not satisfied, do

Vk : c-A"y'

by :=diYg 1 ...

VI V.,,

H .= (ADkA7)

w2 I: lb
w2 :=O-Nb
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When w, and w2 are linearly independent

Solve LP1 and LP2 to get X, and X2
Yk+1 .yl +x (XIW 1+X Xw2 )

set k :=k+1

end

Problems LP1 aid LP2 are small linear programming problems of 2 unknowns each, respec-
tivcly, and aie easily solved. Similar linear programming problems have been solved in Boggs,
tt al (1989) to gei weights for centering and affime directions in one of the many versions of the

-,ual a~finn algorithm.

LP1 : max bT(XIw1 +X2w2) (5)

subject to

AT(Xlw 1+X2w2) < vk

and

LP2 : max bV T(owL+X 2w2) (6)

subject to

AT(XlWI+X 2w2) • v-

bT(XlWI+)2w 2) ;> ZX

where z)* is the solution of LP1. It is noted that, if w, and w2 are linearly dependent then prob-

lems LP1 and LP2 may have unbounded solutions. The problem LP1 retains the degenerate
characteristics of the original problem in equation (3); that is, parallel lines in equation (3)
remain parallel in equation (5). In the case of dual degeneracy in (3), there is dual degeneracy in
(5) but, the optinmal face in (5) is defined by two vertex solutions only, Ponnambalam (1992).

Therefore, if simplex method is used to solve problem LPl, we get a solution for X, and X2 and

we get the step length fir the dual problem in equation (3). Because of LP2, we also solve the
protlem in equation (4) subject to bTyk Ž z*(k), where z°(k) is the objective function value

found at the klh iteration. It is easy to show that z*(k) -+ r* (the solution of the dual problem in

equation 3) when k -- o. Thus, we get a dual optimal vertex solution using the algorithm pro-
posed. Although the dual affine method does not seem to have a proof of global convergence for
large steps, in practice, the maximum number of iterations required to solve the dual problem in
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(3) is small, in the order of 20 to 80.

4. Test Problems and Results

Some preliminary testing of this algorithm has been done for small and medium size p.oblems
using the solvers of MATLABTM , Moler et aL (1987) for dense matrices. Due to the limitation of

space, only results from solving selected problems are reported here. All problems we report

here have degeneracy in dual or dual and primal The algorithm was also tested on nondegen-

erate problems and had no significant difference in performance. AU the problems reported here

are in the dual form as in equation (3).

Problem 1 : max Yl+ 4y3

Subject to:

y-+4y3 • 4

y2" 4y3 < 4

Yl-Y2 < 0

-yi < 0, for all i

Problem 1 is primal and dual degenerate and the two dual vertex solutions are (4,4,0) and (0,0,1 .

Starting from different feasible solutions, for example (0.1,0.2,0.1), the solution reached was

(3.9996,3.9996,0.0009), a solution close enough to the vertex solution (4,4,0) and was achieved
in 10 iterations with a duality gap of less than 10-4. It is noted that different starting solutions

could lead to different optimal vertex solutions which maximizes the 2-norm squared in at least

in the local sense. The following two problems were used to test the effect of size as well as
degeneracy on the performance of the algorithm.

Problem 2 : max i. Yi
i=1

Subject to:
N'•.i.y 5 <m

i=1
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-yj < 0, for all i

Problem 2 has only the dual degeneracy with vertex solutions of type (m,0,...,O),m in
(0,--,0 .... 90)9..,(0 ...... -,0....,O), for all i. Because of the dense solvers used, only problems of

2 £

size m=5 to m=200 were tested- All problems were solved in about 10 iterations each, respec-
tively, reaching an optimal (near)vertex solution usually of the type (m,0,...,0).

Problem 3 : max Fi. Yi
i=1

Subject to:

T'i.Y <5 m
i=1

i' i. Yi <5m, jl,...,M
i=lji~j

-y- 5 0, for all i

The Problem 3 differs from Problem 2 only in the second set of m constraints added to make the
problem dual and primal degenerate. For sizes m=5 to m=200 the algorithm was able to con-
verge to an optimal (near)vertex solution in approximately 16 iterations each, respectively, for

all sizes, mostly to the solution of type (m,0,...,0). However, it is noted that, the proximity to the
vertex in Problem 3 was slightly worser than in Problem 2. This may be expected due to the very
high primal-dual degeneracies present in Problem 3.

Many more degenerate and nondegenerate test problems, including the de•,enerate example sug-

gested by Todd (Tuncel, 1992) were tested successfully as reported in Ponnambalam (1992).
Although the solution obtained was dual feasible, optimal, and very near a vertex, the primal

solution thus obtained need not be feasible. In order to obtain primal feasible solution, if neces-
sary. the only additional step taken so far in our tests is to perform 2 to 4 additional standard dual
affine iterations using only the dual affine direction. Then, a basis recovery procedure as dis-
cussed in Ponnambalam et al. (1992) was applied successfully for the above test problems
requiring a small number of Gaussian elimination steps which depended on the starting point.
However, further research in basis recovery as well as in the following areas are currently being

actively pursued.
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(i) Using a barrier function model I max PTbYy+pt log(c-aiy)+yTy) where g is initially

large and tends to zero at the end.

(ii) Using a potential function model (max (n+l)log(bTy-zL)+yTy+l log(c-a~y)I where

zL is the lower bound. In both cases (i) and (ii), the maximization is done using a two or

three dimensional subspace.

(iii) Finding the step length over a 3 dimensional subspace, namely, that defined by the

affite, centering, and the vertex directions.

(iv) Solving a small quadratic optimization problem as in Singh (1992) to find the step
length instead of solving LP1 and LP2, and lastly,

(v) Solving the Netlib suite of problems using the proposed algorithm.

An interesting problem that may be solved using an algorithm similar to that presented here is

the bi-level linear programming problem arising in many decision analysis such as Game

Theory, Bi (1992).

5. Conclusions

Achieving vertex optimal solutions in interior point methods is expected to aid in the faster
recovery of basis set in linear programming applications. The algorithm presented here has
potential for achieving such an objective. Further theoretical and practical work in directions

suggested here have interesting implications for many types of optimization problems including

the multi-objective optimization.
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Extended abstract

In this paper we consider the following linearly constrained optimization problem:

N

min{c T x + Qi(x)}

subject to (1)

Ax = b
"X > 0,
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where A is an m x n matrix, x, c, b are vectors of suitable sizes, compatible with the

above formulation and Q1 (x), i = 1,2,.., N are some special polyhedral (in other words:

piecewise linear) functions. We assume that

Qi(x') = fi(ý' - T'x), i = 1, 2,.-- N,

where •' is an r'-component vector, T' an r' x n matrix and fi a simplicial function on

a bounded convex polyhedron K' C R'", i = 1,... , N.

A function f(z), z E R' is said to be polyhedral (simplicial) on the bounded convex

polyhedron K C It' if there exists a subdivision of K into r-dimensional convex polyhedra

(simplices), with pairwise disjoint interiors, such that f is continuous on K and linear on

each subdividing polyhedron (simplex).

A simplicial function is a special polyhedral function. The sum of a finite number of
simplicial functions, defined on the same convex polyhedron K, is a polyhedral function.

Let S;, S2•. ., S', designate the subdividing simplices and z,l, zi2, Zik, the set of their
vertices in case of the function fi and the corresponding convex polyhedron Ki. Furthermore.

let fi, = f1(zij), j = 1,2,... ,k; i = 1,2,.-. ,N. Then problem (1) can be reformulated in

the following manner:

N k,

min{cTx + E -fijAij
i=1 j=!

subject to (2)

Ax = b,
k.

T'x+ E zzjAi' =
j=l

k'
L-'Aij = 1, i=I, 2,..-N,

j--!

X>0, A_>0.

Many optimization problems can be cast into the form (2). Below we list some of them.

(i) Minimization of a convex, separable objective function with piecewise linear objective

function, subject to linear constraints.
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(ii) The discrete simple recourse stochastic programming problem is shown to be a special

case of problem (2), in Pr~kopa (1990).

(iii) The linearly constrained minimum absolute deviation problem i. also shown

Pr~kopa (1990), as a special case of problem (2).

(iv) Problems with loose constraints. Assume that A, b,c,x are as in problem (1) an-'

consider the problem:
rmin cT X

subject to

Ax = b
T1x = cl
T 2x -

2

TNx fN,

where ý1, $. are r, r 2, .• r N component ;cctors, and 7', T 2, •., are a-'

n, r2 x n.. , rN x n matrices, respectively. The constraints T'x =', 1," , N d'

allowed not to be satisfied at the expense of some penalty. We say that these cvrstiaains ari

"loose". If the penalty on the ith constraint is given by f,(V' - T'x), where fr is a piecewize

linear function on a bounded convex polyhedron K, that has the property mentioned in the

beginning of this section and fi(0) = 0, then we come to the problem:

N

min{cT X + • f,(C - T'x)}
i=1

subject to

Ax = b
X >0.

Using the A-representation for the functions ./, fl,'", f,, problem (3) takes the forln o!

problem (2).

(v) Stochastic programming with recourse in case of a dis.,:rctc r.-ndom vector.

(vi) Programming under probabilistic constraint.
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The purpose of the paper is to present a dual type method for the solution of the problem,

together with a fast bounding technique. The method has been implemented in FORTRAN
77 and numerical results have been obtained on Sun SPARC work stations. The results,
especially those concerning the bounding technique, are very promising.
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1 Introduction

Multi-attribute decision models rely on two forms of numeric input: objective

data defining the physical aspects of the alternatives, states and consequences

of the decision model; judgemental data relating to the decision maker's (DM)

beliefs and preferences. Although variations on both forms of data may' have

great effects on the outcome of the decision model, the concern here is with

variations in the judgemental data.

In its traditional sense, sensitivity analysis allows exploration of the effects

of variations in the judgemental input on the ranking of alternatives. However,

as pointed out by French [51 and others, it also plays the role of an aid to the

elicitation process of decision analysis by focussing discussion and reflection on

the judgemental data. Commercially available decision analysis packages such

as ARBORIST [12], HIVIEW [1] and VISA [3], however, allow only limited

forms of sensitivity analysis.

Recently Rios Insua and French [9, 11] have developed a conceptual frame-
work for sensitivity analysis in multi-criteria decision making which allows si-

multaneous variation of judgemental data and which applies to any paradigm

for decision analysis. The principal problem in implementing the Rios Insua-

French framework is the heavy computational load which is required to support
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it. This arises because the analysis relies on distance-based tools and involves

the solution of many mathematical programming problems, which may be

nonlinear and nonconvex. Even though the individual optimisation problems

are small, this represents a substantial load, particularly since, in order to

provide reliable information from the sensitivity analysis, global optima of the

nonconvex problems must be sought. The computat.ional load may inhibit use

of the framework particularly as decision analyses are often performed in the

context of decision conferences, where it is desirable for sensitivity analyses to

be conducted in near real time preferably on a PC. Approaches to reducing

tie time Lo perform die analysis include reformulation of some of the mathe-

matical programs involved [7, 10] and exploiting parallelism within the phases

i6].

In the following we shall briefly describe the framework and its implemen-

,ation in a parallel environment consisting of a PC enhanced by the addition

oi a transputer board. This will allow the necessary analyses to be undertaken

it parallel, thus making it possible to handle the computational load in ac-

ceptable times. Experimental results with linear and bilinear models will be

;acluded.

2 The Sensitivity Analysis Algorithm

2.1 The Evaluation Problem

Consider the evaluation problem in multi-criteria decision making [2] in which

a finite set of alternatives adi = 1, ... , N are ranked using the evaluation func-

tion * (a1, w) where w is the vector of judgemental data.Then alternative a i is

preferred to alternative aj if

%Y (a,,w) > (a, tw)

To detect a* the alternative which currently ranks first, each judgemental

input is provided with an initial value wo. Other information related to the

judgemental data such as monotonicity conditions on utilities, normalisation

conditions on probabilities or weights are represented by constraints limiting
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the values of w acceptable to the decision maker (DM) to the set S so that

w E S. Three cases occur in practice:

* linear models, in which TP is linear and S is defined by linear constraints,

@ bilinear models, in which ' is bilinear and S is defined by linear con-

straints,

* general models, in which %Y is nonlinear and S not necessarily convex.

2.2 Algorithm

The general algorithm for sensitivity analysis as described in [9] proceeds

through four phases:

1. The dominance phase in which the set A, of non-dominated alternatives

is found;

2. The potential optimality phase in which A2 the set of non-dominated

alternatives which could be optimal for some w E S is found;

3. The adjacent potential optimality phase in which A3 the set of potentially

optimal alternatives which are contenders to a* for optimality if a smooth

change of w away from w° occurs, is found;

4. The distance analysis phase in which the minimum change in w° required

by each contender ai before optimality switches from a' to a, is computed

in both the 11 and 1,, metrics. This information, together with that

provided by maximum distance problems, is then used to compute an

index of sensitivity of the optimum solution [6].

2.3 Computational Aspects

Each phase requires the solution of several mathematical programmes, whose

form depends on the phase and the nature of %P(a;, w) and of S. In the lin-

ear model, all problems arising in Phases 1-3 are linear programmes. The

minimum distance problems are convex and can be transformed to linear pro-

grammes. The maximum distance problems are non-convex but the l.. prob-

lem can be solved by linear programming [7]. Hence only the 11 maximum

distance problem causes difficulty.
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In the bilinear model, the 1o, problem again can be solved as a set of linear

programmes but all other problems have a bilinear objective function and/or
bilinear constraints and, in general, are non-convex. In the general model all

problems are general nonlinear programmes and, in general, are non-convex.

3 Parallel Implementation

The general algorithm for sensitivity analysis is intrinsically sequential due

to the precedence relationships between the phases. Parallelism, however, is

present at the level of each phase. Given the potentially large number of
mathematical programmes to be solved, large grain parallelisation is most ap-

propriate especially when the hardware to be used is a MIMD machine, such

as a transputer network, because of the high ratio of time spent in communi-
cation. Also, transputers being fast processors with enough local memory, it

is attractive to make them operate as autonomously as possible.

In the present implementation, the processor farm approach is adopted.

Individual problems arising at the level of each phase are farmed out to in-

dividual nodes by the master process which resides on the root node. The

worker process is replicated on each node of the network.

The master process consists of three threads running concurrently: the

producer which generates the problems; the sender thread which transmits

them to the network; the consumer thread which collects the results from the

network and displays them.

The worker process consists of a single thread which communicates with

the master and solves linear and nonlinear programmes.

3.1 Equipment

The parallel processing environment consists of an Elonex 386S-200 PC com-
prising a TMB04 motherboard with a T805 processor and 4 Mbyte RAM as

the root node; 4 T805 transputers with 4 Mbyte of RAM each and 3L Parallel

Software consisting of a Fortran compiler and a set of extension functions for

message passing, a task harness and a configuration system. The topology

of the network is a ring with a connection between the free link of the root

transputer and one of the two nodes which are not linked to it. The network
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is configuring by file submitted to the static configurer or the flood-fill config-

urer. Synchronisation is either implicit through algorithm design or explicit

using descheduling functions.

In order to use this system, codes for linear and general nonlinear program-

ming are required. For linear programming, a simplex-based routine has been

developed. For the general nonlinear programming problem, the multi-level

single linkage algorithm of Rinnoy-Kan and Timmer [81 was adopted. It relier

on a local optimisation routine based on a sequential quadratic programming

algorithm [4].

3.2 Parallel Algorithm

The algorithm of the master process consists of three procedures which run

concurrently.

Producer thread:

Read data of the considered model of decision analysis;

Broadcast initial data to all workers;

Start Sender;,

Start Consumer;,

Rank alternatives according to T (ai, w) and w0 ;

Start sensitivity analysis;

For Phase = 1:4 do

a:Generate problem in Phase;

Put under standard message form;

Wait for Sender to be ready;

Pass message to Sender,

go to a:;

Endfor;

When all phases have been considered send Stop-message to

Sender and Workers;

Send Stop-message to Consumer through a COMMON variable;
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Sender thread:

b:Wait for an incoming message from Producer-,

Receive message;

When the network presents an idle processor, pass message to it;

If message is a Stop-message then stop;

Otherwise go to b:

Consumer thread:

c:Wait for an incoming message from the network;

Receive message;

Process it and display results;

Check for Stop if current phase is the last;

Or else go to c:

4 Conclusion

Computational results show that the framework is viable for linear models of

practical size. For the bilinear models, limited experience shows performance

gains due to parallelisation. Two strategies for solving the global optimisation

problems in parallel were tried; the first strategy kept the algorithm for global

optimisation as part of the master process and thus only local optimisation

problems were farmed out. In the second the global optimisation problems

themselves were sent to the workers, thus making the global optimisation

routine part of the worker process. Although, better results were obtained

with the second strategy, in both cases the speed up was less than linear.
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1 Introduction

The Global Optimisation (Minimisation) Problem can be expressed as follows:

Let f be a function from R" to R and A C /n, then find a; E A such that
VX E: A, f(x*) !_ f (x).

When f is unimodal, a suitable algorithm may be found among the numer-

ous algorithms for local optimisation, depending on properties such as conti-

nuity and differentiability of f, compactness of A etc. When f is multimodal

and/or lacking the above properties, there is no method which is guaranteed

to find its global minimum. A difficulty is that no practically useful test for

optimality is available, as is the case for smooth local optimisation, so that,

in principle, one has to evaluate the function at every point of A, which is not

possible. As Schoen [11] says the problem is "inherently intractable".

Despite the difficulty of the problem, we are witnessing an 'explosion' in

the design of algorithms for GO. As a consequence it is not easy for the user

to choose a suitable algorithm for his/her application, particularly if the algo-

rithm is to be embedded in a general purpose package. Despite many reviews

of GO techniques, the experimental record is patchy but points to the relative

success of stochastic algorithms. However, there are many algorithms in this

class.

In the following we shall be concerned with representatives of two popular

stochastic algorithms for global optimisation, namely clustering and simulated
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annealing. Issues related to their implementation and use to solve practical

problems involving general constraints in addition to simple bounds on the
variables will be discussed. Computational results will be given.

2 Stochastic Algorithms

Stochastic algorithms generally employ both heuristic and probabilistic meth-

ods to provide an approximation to the global optimum. The major compo-
nents of such algorithms are:

* sampling - generate a random sample of points in A

e local optimisation - apply a local optimisation algorithm to f starting

from each of a subset of the sampled points

a stopping rules - decide whether to draw another sample or whether to

accept the smallest observed value of f in A as an approximation to the

global minimum.

The quality of the approximation usually can be traded-off against the runtime
of the algorithm by adjusting one or more parameters which control the above

components. However there is little or no systematic knowledge on which to

base such tradeoffs. In the case of constrained global optimisation, A is often

relaxed to a hypercube in order to ease the task of sample generation. We

then rely on the local optimiser to find feasible points.

2.1 Clustering

Cluster analysis is usually associated with pattern recognition where objects
belonging to an initial set are separated into subsets or clusters according to

some similarity characteristic, say shape or colour etc... In GO it was intro-

duced by Becker and Lego [2] in the early 70's in order to reduce computing

time in the multistart algorithm (15]. The basic idea is to try to identify

clusters of points which will lead to the same local minimum. By starting a

local optimisation from a representative of each cluster each distinct local min-
imum hopefully will be discovered only once. The practical implementation of

this idea, however, depends on the choice of many parameters which make up
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the Threshold Distance on which clustering depends. Negotiating the difficult

choice of these parameters and adequate stopping rules remains the key to the

efficient implementation of clustering algorithms. Recent attempts have been

made to improve clustering algorithms by adequate choice of sample size [12]

and use of topographical information of the search space [13]. However, no

experimental results yet provide strong support for these improvements.

The multi-level single linkage algorithm of Rinnooy Kan and Timmer [10]

appears to be one of the most efficient amongst stochastic algorithms for GO.

Tests, however, appear to be confined to problems of small dimension and

with only simple bound constraints. An implementation of this algorithm

will be considered here. A somewhat simpler clustering method due to Torn

and Viitanen [14] is also considered since it has potential advantage for the

application which motivated this research.

2.2 Simulated Annealing

The concepts of annealing in optimisation were introduced in the early 80's

[9], [5]. Initially interest was in their application to solving combinatorial

optimisation problems [1]. The simulated annealing based algorithm (SA) has

been reported [91, [8] to perform well on such problems in high dimensions

with a large number of local minima. Based on this success, variants of SA

for continuous global optimisation have been developed [16], [4], [6], [7]. SA

is a stochastic method by means of which the global minimum of a function

f, regardless of its continuity or differentiability, can be appareed as close

as one desires. The main feature of the algorithm is its ability to 'distinguish'

between the fine behaviour and the gross behaviour of the objective function.

Assuming that fine behaviour leads to poor local minima with small regions

of attraction, the algorithm detects it and avoids getting trapped by taking

uphill steps, thus allowing the function value to increase momentarily. This

strategy is based on what is called the acceptance/rejection rule. To draw a

parallel, note that the strategy of the multistart algorithm relies on starting a

local search from different points.

Accepting or rejecting uphill steps in SA is determined by a sequence of
random points with a controlled probability min(l, e ), [7], where T is

the control parameter. This parameter is crucial as it slows down the algorithm
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if it is too high and it removes the global aspect of the algorithm, i.e. uphill

moves, if it is too small [I), [8], [11]. Besides parameter T which requires an

initial value, a decrement function for decreasing it and a final value to use in

the stopping condition, another parameter is also required to be set for any

practical implementation of the algorithm. This parameter is the length L

of each Markov chain corresponding to each sequence of decreasing T. The

concept of finite Markov chains is used to derive a mathematical model of SA,

given that in SA the outcome of a trial depends only on the outcome of the

previous trial [1]. This set of parameters is usually referred to as a cooling

schedule [7], [1].

The simulated annealing algorithm implemented in the present work was

based on the Dekker and Aarts variant [7]. The principal difference is in the

generation of new points from a given point. While in [7] this was accomplished

using a local search procedure, we adopt a Hit-and-Run algorithm for detecting

non-redundant constraints [3]. This is mainly because the search spaces of the

problems to be solved are not defined just by simple bound constraints.

3 Experimental Work

The test problems used in the experiments are practical problems arising in

decision analysis. They are by no means extremely difficult, but they present

nondifferentiability, nonlinearity in the objective function or the constraints or

.•.both. Above all, they have many minima and nontrivial constraints and are

of higher dimension than is often encountered in the literature. Comparative

results obtained with Fortran77 codes for the three algorithms cited above will

be reported.
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1 Introduction.

An important class of simple and efficient algorithms for optimizing a function f on a set S is Lhe
class of greedy (or myopic) algorithms. Since the work of Edmonds [14], [151 on matroids and of
Hoffman (23] on transportation problems, numerous authors have studied conditions on f and S
which guarantee the convergence of greedy algorithms to optimal solutions. In* the c&..e where f
is linear and S is a polyhedron, two broad and well-known classes of linear programs have been
shown to be optimally solvable by a greedy algorithm. Following the work of Edmonds, the first
class includes optimization problems on polymatroids and related submodular polyhedra, cee
Frank and Tardos (17] and Fujishige's monograph (19] for in-depth studies. On the other hand,
following the work of Hoffman, the second class includes transportation problems, both ordinary
and multi-index, with cost coefficients satisfying some form of a so-called Monge condition (see
Hoffman 125] and Bein et al. [11] for details).

In this paper, we present a dual pair of linear programs, in which the variables are associated
with the elements in a sublattice of a discrete product lattice. We show that a greedy algorithm
solves both primal and dual programs when the cost coefficients in the primal problem (or,
equivalently, the right hand sides in the dual problem) are given by a submodujar function on
the sublattice. The primal problem generalizes the multi-index transportation problem of Bein
et al. [111 to the case of forbidden arcs with a sublattice structure. The dual problem generalizes
the linear optimization problems on submodular polyhedra by Lov~sz [29] and Fujishige and
Tomizawa [201 to a distributive sublattice of a finite product space.

In addition to enlarging the class of linear programs solvable by a greedy algorithm, our
work also unifies heretofore separate streams of research and highlights the duality relationship
between (multi-index) transportation problems and linear optimization problems on submodular
polyhedra. In particular, we observe that submodularity and the Monge condition are the same
concept expressed in different forms. Indeed, known results on lattices .nd submodular functions

"*University of Limburg, Department of Mathematics, P.O. Box 616, 6200 MD Maastricht, The Netherlands
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are independently re-discovered in the context of the Monge condition for multi-dimensional
arrays. Conversely, Dew results for Monge matrices also apply to submodular functions.

The contents of this paper are as follows. In Section 2, we define the dual pair of linear
programs which is the object of this paper. We show how they generalize multi-index trans-
nportation problem-- and linear optimization problems on submodular polyhedra. In Section 3,
we present the greedy algorithmi and prove that it produces optimal solutions to the primal and
the dual problems. Finally, in Section 4, we discuss relations between submodularity, the Mange
condition for a matrix and the existence of Monge sequences.

2 Lattices, submodular functions, and a dual pair of linear
programs.

Let the integer k > 2 denote the dimension of the product lattice defined below, and K -
(1,... ,k}. For i E K, let A, be a totally ordered set (or chain) with rn(i) + 1 elements. For
simplicity, we let A, -- (0,,.., mn(i)}, with the usual total order 0 < 1 < ... < rn(i), for all
t e c K. The product apace A At x A2 x .. x A&: is a distributive lattice with join and meet
operations defined by

a V b (maxfa(1),b(1)}, .. max{a(k),b(k)}))

and
aAb-- (rninfa(I),b(1)}, .. min{a(k),b(k)J),

respectively, where a and b are any elements of A. As is well-known in lattice theory (see
references below), these operations induce the usual partial order "<' on this lattice A by

a <b a a=a Ab (-#=* b =a Vb).

Let 0 -- (0,...,'0) and mn -- (m(1),... ,rn(k)) denote the smallest and largest element of A,
respectively.

Let B denote any subset of A. For any i E K and j E A. we define the section B(i,j) of B
at (i,J) as B(i,j) {- a E B :a(i) = j}. For any a E A we define the (lower) truncation B.
ofBataasB.0 ={bEB :b'Za}.

Asubset Bof A is a aublattice if for every a,bE BwehaveavbE Band aAbE B. If Bis
a sublattice then the sections B(i, j) and the truncations B. are also sublattices, for all i E K,
j EA4 and a EA.

A real-valued function f :B ý-, R on a sublattice B is eubmodular if the following eubmodudar
inequality

f (a Vb) + f(a Ab) :5 f (a) + f(b)

holds for all a, b E B. It is strictly aubmodular if this inequality is strict whenever a V b
(a, b). See, for example, Birkhoff 112] for a general exposition of lattice theory, and Topkis [371,
Veinott 1381 and Granot and Veinott (211, and the references therein, about product lattices, their
sublattices, and submodular functions (called "subadditive" function. in the latter reference).

Let B be any subset of A and let B* - B \ (0). We associate a cost tv(a) with every
element a E B'% and a nonnegative demand dj, with every section B(i,j) where i E K and
j E A:*A.\ {O}.
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We now formulate a dual pair of linear programs (P) and (D):

(P) min E ax
aEB"

s.t. E - x, = d,, for i E K and j E A:;
&EB(iij

X, > 0 for all a E B';
and

(D) max djyi
iEK :EA-

s.t. E y/,.(j) < w(a) for all a e B'.
*EK.(,)*0

Multi-index transportation problems. The primal problem (P) just defined contains as
a special case the following axial k-index transportation problem with forbidden arcs. The k sets
A*,..., A; may be interpreted as sets of sources, destinations, types of goods, and various reiatcd
resources. Let B denote the subset of A' - A* x... x A; consisting of non-forbidden (permissible,
combinations a E A'. With each section B(i,j) we associate a nonnegative "demand" (which
may be interpreted as a supply when A! is a set of sources, and as a capacity when A! is a set
of resources). It is assumed that -•EAA (4i = D, a constant for all i E K. With each element
a E B, often called an "arc", we associate a cost rate w(a) and a nonnegative decision variable
x. representing the amount of "demand" which is satisfied by the corresponding combination.
The (axial) k-index transportation problem is to determine the amount associated with each
permissible arc a E B so as to satisfy exactly the demand of each sec:tion B(i,j) (for all I F k
and j E A) at minimum total cost. This problem may be formulated precisely as an instsence
of problem (P).

The case where B = A' (no forbidden arcs) is the axial multi-index transportation problem
defined by Haley 1221 (see also Chapter 8 in [411, and [1i]). The axial h-indez assignment
problem arises when all rn(i) are equal to a constant m, all demands are equal to 1, and all
decision variables are restricted to be either 0 or 1, see, e.g., Pierskalla [32] and Bandelt et
al. [91. When, in addition, k = 3, we have the much studied (axial) three-dimensional .hign.ment
problem, see Frieze and Yadegar [18], Balas and Saltzman [8], and Crama and Spieksma [13].
The above references describe several practical applications of these different models in such
areas as logistics, automated production, statistics, and course scheduling.

Note that, in addition to offering a compact notation (compared to the above references), our
formulation of problem (P) allows us quite naturally to exclude forbidden arcs. Ordinary (i.e.. 2-
index) transportation problems with forbidden arcs were considered by Shamir and Dietrich [36]
in connection with the existence of Mange sequences; see Section 4 for details. Note also that
we do not need to require in problem (P) that the total demand EijA" d.i be constant for all
iEK.

Submodular polyhedra. When m(i) = I for all i E K, the lattice A may be identified
with the lattice 2 K of all subsets of K. Sublattices B are then (distributive) set lattices, .wc!
submodular functions coincide with those now well-known in combinatorial optimization (see.
e.g., Nemhauser and Wolsey [30]). The constraints of problem (D) are then precisely those
which define a saubmodular polyhedron as in Fujishige [19] (aee also Frank and Tardos 1171).
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When B = A = 2K we have the problem which Lovasz [291 shows to be solvable by a greedy
J-gorithmn. These polyhedra are closely related tw the polymatroids introduced by Edmonds 1151,
see the preceding references for details.

Problem (D) properly generalizes these submodular polyhedra by allowing each chain Ai in
the latticc to contain any number of elements, giving rise to arbitrary (finite) product lattices.
This is akin to extending attention, in integer programming, from binary variables to general
integer-valued variables. We refer to the work of Topkis, Veinott, and Granot and Veinott cited
above for a description of some of the problems amenable to this broader framework.

The Greedy Algorithm in the next section generalizes on one hand those of Hoffman and
3ein el al. for (ordinary and multi-index) transportation problems, and on the other hand
tnose in Lovsz and in Fujishige and Tomizawa for submodular polyhedra (the latter two being
-hemnselveg generalizations of that of Edmonds for polymatroids).

3 A greedy algorithm.

We first describe the input and output of our algorithm for problems (P) and (D). Throughout
this Section, we assume that B is any sublattice of A.

Input:

integer k the dimension of A;

integers mi(I),..., m(k) defining the range of each coordinate of A;
reals dj ý: 0 demands, for all i E K, j E A:;
oracle MAXLE describing sublattice B (see explanations below);
oracle w returning the value w(b) for any b E B.

Output:

variable Status indicating the status, Feasible or Infeasible, of problem (P);

and if Status = Feasible:

list ((b',z•1),..., (bT, Xbr)) describing a primal solution (see below);
reals yi, 2! 0 describing a dual solution, for all i E K and j E A:.

The sublattice B might be presented in different ways, such as: a list of all elements in B (the
permissible elements or cells); a list of all elements in A \ B (the forbidden elements); collections
of conditions (for example, monotone linear inequalities, see [38]) characterizing permissible or

forbidden elements; and so forth. However, to achieve sufficient generality and to exploit the
intrinsic simplicity of the Greedy Algorithm, we use the following oracle, which we call MAXLE.
The input to MAXLE consists of any element a E A. Oracle MAXLE then returns "NULL"
if the truncation B. of B generated by a is empty; else it returns V B., the largest element of
b E B such that b < a. We leave it to the interested reader which data structures can be used
to efficiently implement this oracle for a given representation of the sublattice B, such as one of
those outlined above.

The output to the Greedy Algorithm exploits the sparseness of the basic solutions to prob-
lem (P). Although the primal solution vector z has one component zx for every element b E B,

(and hence potentially up to (H(m(i) + 1)) - I variables), at most &. rm(i) of these will assume
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a positive value. Thus the Greedy Algorithm, which will be shown to produce a dual pair of
basic solutions to problems (P) and (D), returns a list of T pairs (b, z,) with b E BO and x4 is the
value of the corresponding variable in the solution. The number T of such pairs is determined
by the algorithm, but will be shown not to exceed Zi rn(i). It is understood that zx - 0 for all
b E B" which do not appear in this list.

The Greedy Algorithm detailed below consists of two phases. The Primal Phase repeats the
following step: identify (using the MAXLE oracle) the largest available element b E B" and
assign the largest possible value to its variable z6. This step is repeated until either infeasibility
is detected, in which case the algorithm halts, or all demands are satisfied. In the latter case, the
list of (b, xb) pairs output by the algorithm defines a feasible primal solution. The Dual Phase
then traces back the sequence of elements b E B recorded in the Primal Phase to construct
(using the to oracle) a dual solution y.

GREEDY ALGORITHM:

Primal Phase.
0. (Initialize:)

Let bii := dj for all i,j;
A:=K; a:= MAXLE(m); t:=0;

1. (Main step):
Repeat

if (a $ NULL) then {
if (there exists (i,j) with j > a(i) and Sij > 0) then

return(Status := Infeasible)
else (

t + 1;
let i = argmin(t,a(f) : t E A);
X. := b,,(*+ 0~) := i
add (at, zx,) := (a, z,) to the output list;
let blo(t) := bto(j) - zx for all f E A;
a(i) := a(i) - 1; if a(i) = 0 then let A := A \ (i);
let a := MAXLE(a);
}

)
until (a = 0 or a = NULL);

2. (Final test for infeasibility):
If (a = NULL and there exists (i,j) with 6j > 0) then

return(Status := Infeasible);
else { let T := t; output the list (al,:zj),... ,(aT, X.,);

Dual Phase.

For t := T down to 1 do
output Y(0.a,(() :=

w(at) - {"to(au) : all u > t with a.(r1(u)) = a(r(u))i;
Return(Status = Feasible).

Note that, when applied to an ordinary (two-dimensional) transportation problem, the Pri-
mal Phase reduces to the well-known North-West corner rule (with an appropriate geographic
orientation of the transportation array). More generally, the Primal Phase reduces to the greedy
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algorithm of Bein et al. [111 for multi-index transportation problems without forbidden arcs In
the case where problem (D) is a linear optimization problem over a submodular polyhedron,
(that is, A, = {0,1} for all i E K), the Primal Phase amounts to sorting the d,- values in a
nondecreasing order, consistent with the sublattice B in the following sense: if b(i) = 1 for all
b E B with b(h) = 1, and if 97(t) = l and 9(u) = h, then t > u (for all h,i E K). Then, in
the Dual Phase, the y-variables are sequentially maximized according to this sequence, with
Yn(t),a,("(t)) := w(at) - Eu>g w(a.). Thus the Greedy Algorithm just presented reduces to that
of Lovasz 129] and of Fujishige and Tornizawa 1201 in the case of submodular polyhedra.

Theorem 3.1 Let B be a sublattice of a finite product apace.
(1) The Greedy Algorithm returns Status = Infeasible if and only if problem (P) is infeasible.
(2) If problem (P) is feasible, then the Greedy Algorithm outputs an optimal solution to

problem (P) for all nonnegative demands d if and only if u; is submodular.
(3) If problem (P) is feasible and w is 8ubmodular, then the Greedy Algorithm outputs an

optimal soiution to problem (D) in the Dual Phase.

Note that, for a given demand vector d such that problem (P) is feasible, the primal solution
constructed by the Greedy Algorithm does not depend on the cost function w, provided it
is subr--odu'ar. See III and [2] for a study of a similar property in the context of ordinary
transo.ortation and minimum cost network flow problems.

A consequence of Theorem I is that, when w is submodular, the inequalities of problem (D)
form a toially dual integral (TDI) linear inequality system (see Edmonds and Giles (161, Hoffman
[24], and Nemhauser and Wolsey [30] for a definition and properties of TDI systems).

4 Submodular costs and Monge properties.

The main purpose of this section is to point out and exploit the equivalence between submodu-
larity of a function defined on a product of k chains, and the Monge condition of a k-dimensional
array. We also introduce the concept of submodular sequences, and discuss its relationship with
that of Monge sequences in two-dimensional arrays. In particular, we show that, for any strictly
.ubmodular two-dimensional array, the class of submodular sequences coincides with that of
Monge sequences.

The concept of Monge sequences was introduced for two-dimensional arrays (matrices) by
Hoffman in 1963 (231 in order to describe classes of transportation problems that are greedily
solvable. A Monge sequence for a two-dimensional n x m array C = (c[i,jj) is a total ordering
of the nm pairs (i,j) such that, whenever pair (i,j) precedes both pairs (i,f) and (k,j),

cli,j] + cjk,j] _< cli, ] + c[k,j).

The inequality in this definition has been independently observed and exploited in algorithms
for a wide variety of problems, under various conditions about the indices i,j, k and t. The
most common condition is that i < k and j < t: a two-dimensional array C satisfies the Monge
condition if

cli,j] + cfk,t] _• c[i,t] + c(k,jI

holds for all i,j, k, £ with i < k and j <_ t. Note that this definition is precisely that of the
submodularity of the function defined by C on the product lattice {1, ... ,n} x (1,... ,m}.

When the only defined entries in the matrix are above the diagonal (thus forming a sublattice
of the lattice A of matrix cells), this condition is also called the (concave) quadrangle inequality
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(e.g., 140]), and (as if to add to the confusion) functions defined by such an array are sometimes
called concave functions (e.g., [281). The computer science community has seen a flurry of
activity on these and closely related concepts during the past few years. This activity was
motivated in part by the seminal paper of Aggarwal et al. [41 on matrix searching, and also by a
wide variety of applications to problems in such areas as computational geometry (e.g., [4], [3]),
VLSI channel routing (e.g., [4], [5]), signal quantization [39], molecular biology (e.g., [35], [281),

dynamic lot sizing (the Wagner-Whitin problem) [7], and the travelling salesman problem [31].
Because the field is now so vast, we have only given here a few indicative references. Further
references can be found therein.

The concept of Monge arrays has recently been extended to k-dimensional arrays by Aggarwal
and Park [5], [6]: a k-dimensional array C satisfies the Monge condition if every two-dimensional
plane of C corresponding to fixed values of k - 2 coordinates satisfies the Monge condition.

Actually, the Monge condition just defined is equivalent to the submodularity of the function
c : A --+ R defined by the array C. Indeed, the following result (compare Proposition 2.4 in [5])
is a direct rephrasing of Theorems 3.1 and 3.2 in Topkis [37] for the case where A is a product
of a finite number of chains, as is assumed throughout the present paper:

Theorem 4.1 A function c : A -. R is submodalar if and only if it is submodular on every
two-dimensional sublattice (plane) corresponding to fixed values of k - 2 coordinates.

As a consequence, many results on k-dimensional arrays satisfying the Monge condition (such
as in Section 2 of [5] and in Section 2 in [11]) can be directly derived from known results on
submodular functions. In addition, the deep theory of parametric lattice programming developed
in Topkis [37] also applies to problems involving k-dimensional arrays satisfying the Monge
condition. Conversely, the rich computer science literature on Monge and related arrays, in
particular the fast algorithms deve! •ped for a variety of such problems, may also be exploited
to study submodular functions on discrete product lattices. (A case in point is the dynamic
lot-sizing problem considered in detail in Topkis, and for which fast algorithms were derived
in [7] using the Monge condition.) The problem of recognizing the Monge condition, and hence
submodularity, is considered by Ruediger [N4] for k-dimensional arrays.

We now go back to Monge sequences. This concept was originally introduced by Hoffman
for two-dimensional arrays, as seen above. It was further investigated, among others, in [36],
[1], [2], and is closely related to the notion of greedoids (see [27]).

Some authors (e.g., Bein et al. [10], and Ruediger [33]) have recently investigated the possi-
bility of extending this concept to higher dimensions. However, at present no approach seems to
clearly dominate. Hence we restrict our discussion of relations between submodularity and the
existence of Monge sequences to the two-dimensional case. The following notion arises naturally
in the lattice framework: a submodular sequence for a two-dimensional n x m array C = (ci,j])
is a total ordering of the nm pairs (i,j) such that, for any i,j, k and t, at least one of the pairs
(i,j) A (k,t) or (i,j) V (k,t) precedes both pairs (i,j) and (k,t).

Proposition 4.1 A two-dimensional array is submodular (or, equivalently, satisfies the Monge
condition) if and only if every submodular sequence is a Monge sequence.

It is not true that, in a submodular array, every Monge sequence is a submodular sequence.
For example, consider a constant array C where all entries cli,j] have the same value. Then
every sequence of the pairs (i,j) is a Monge sequence. However, the next result shows that
Monge sequences coincide with submodular sequences when C satisfies a strict version of the
Monge condition:
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Proposition 4.2 If a two-dimensional array C defines a strictly eubmodular function then a
total ordering of the pairs (i,j) is a eubmodular sequence if and only if it is a Monge sequence.
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Let G = (N, E) be an edge-weighted undirected graph with node set N ){l,...,n), edge
set E and weights wi,, ii E E. We consider the problem of partitioning the none set N Lnto

k disjoint subsets S1,...,S, of specified sizes m, _ ms _ ... M> mk, _ i = n, so as to
minimize the total weight of the edges connecting nodes in distinct subsets of the partition. This

problem is well known to be NP-hard and therefore finding an optimal solution is likely to be a

difficult task. We focus on bounding the optimal partitioning. A survey on related problems can

be found in e.g. [4].
An instance of a graph partitioning problem is described by the (symmetric) adjacency matrix

A of size n and an integer vector m = (m.,... , mk), defining the specified sizes for the subsets

of the partition. The vector u is a vector consisting of ones. Finally we denote by w(E) the

sum of all edge weights of G, i.e. w(E) = u'Au/2, and by w(E,,a) the total weight of the edges

cut by an optimal partition. Moreover let w(Eu,,g,) := w(E) - w(Ecg). The following nonlinear
optimization problem solves the graph partitioning problem, see e.g. [5].

(GP) w(E., ,) = max 1trXt AX
2

such that
XtX = diag(m) (1)

Xu, = u"; Xtu, = m (2)

X > 0. (3)

The constraints guarantee that all entries of the n x k matrix X are either 0 or 1. The nonzero
entries of column j of X represent the nodes contained in Sj.

We will use the model (GP) to obtain tractable relaxations for graph partitioning and hence

at least bounds on w(E,,,).
Dropping the constraints (2) and (3) leads to one of the first relaxations for graph partitioning.

It was proposed by Donath and Hoffman in the 1970s [1]. Aj(M) denotes the j-largest eigenvalue



500

of a (symmetric) matrix M.
1k

w(E,,.A) 5 max{-trX*AX :X satisfies (1)} = JimjAi(A). (4)
2 j=1

Any X containing pairwise orthogonal eigenvectors zj corresponding to Aj(A) and having the

correct length 117jlj2 = mj constitutes a maximand in (4).

The Donath-Hoffman bound can be further strengthened by dropping only the nonnegativity

conditions from (GP), see [5]. In the case where the mi are all equal (to n/k), the linear term

in the bound is constant. Assumption: m, = ... = mk = n/k. We denote by V,, an arbitrary

matrix satisfying Vtu = 0, V'V = I,-. In other words the columns of V,, are orthonormal and

orthogonal to u.

w(E..a) :_ maxi{trX'AX: X satisfies (1),(2)}= • i(._ )(V+AV,) +L°(A). (5)
2 2k j=1

This upper bound is attained for

+ t(6)

where Z contains a set of k - 1 orthonormal eigenvectors corresponding to the largest A,(V,'AV,).

A further improvement can be achieved along the following lines [1, 5]. Let d E R" and X be

an arbitrary feasible partition, i.e. X satisfies (1,2,3). Then it can readily be seen that

tr X'(diag(d) - -I)X = 0.
n

Therefore, see [5), it can be shown that

I nk-1 d'un
2k 2k . , nA)n

w(E,..) -__ (A) + • j A •(V,I(A + diag(d) - -1)V,,)-- ()+-id.

This leads to the following bound for partitioning the nodes into subsets of equal size, see (5]:

w(E..w) _ -(- + min(n{ (d): d E Rn}. (7)

The corresponding maximizer X can be used to generate "good" partitions, by either rounding

or solving transportations problems, see [5], [2] for further details.

We conclude with some numerical results on graphs used by Johnson et al [3] to test graph

bisection heuristics. In the following table n denotes the size of the (unweighted) graph of

cardinality IEI. We further provide the density in %. The column labeled "Upper Bound'

contains the upper bound (7), using tools from matrix analysis to calculate the largest eigenvalue,

and tools from nonlinear optimization to carry out the minimization. We consider bisecting the

graph, i.e. k = 2. The column labeled "Lower Bound" contains a bisection obtained by rounding
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and limited local improvement. We also provide the relative gap (in %) between lower and upper

bound, and include the best solutions described in [3]. It is interesting to see that the present

approach yields not only tight bounds, but also produces at low computational cost fes-ible

solutions that are highly competitive with solutions obtained after extensive experiments using

simulated annealing and the Kernighan-Lin heuristic.

n IEI Density (%) Upper bd Lower bd % gap Johnson

124 149 2 141 13n 3.7 136

124 318 4 271 254 6.7 255

124 620 8 467 442 5.6 442

124 1271 17 853 822 3.8 822

250 331 1 316 301 5.0 302

250 612 2 531 496 7.3 498

250 1283 4 981 925 6.1 926

250 2421 8 1675 1588 5.5 1593

500 625 0.5 600 673 4.7 573

500 1223 1 1071 1001 7.0 1004

500 2355 2 1844 1713 7.6 1727

500 5120 4 3564 3358 6.1 3376

1000 1272 0.25 1228 1172 4.8 1170

1000 2496 0.5 2193 2030 8.0 2045

1000 5064 1 3958 3676 7.7 3697
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1. Introduction

Background and description of the problem. In satellite communication, one satellite
can serve several radio stations on earth. In order to allow signals to be sent from each radio
station to each other radio station, the TDMA (time division multiple access) technique
is used. At any instant, the satellite is set to a fixed switching mode: All radio stations
transmit and receive data simultaneously, and the switching mode determines for each
radio station the radio station which receives the data which the former transmits. In
mathematical terms, a switching mode is a one-to-one mapping on the set of radio stations,
i. e., a permutation. The satellite time-multiplexes regularly between different switching
modes in short intervals, according to a fixed cyclic schedule.

The communication needs between the radio stations are given by a matrix T = (tij),
the traffic matrix. tij is the amount of information per time unit that has to be transmitted
from the i-th to the j-th radio station. More information on the technical background can
for example be found in Burkard [1985]. We consider the problem of setting up a schedule
for the satellite, i. e., a sequence of switching modes and a duration for each switching
mode. Formally, the matrix decomposition problem can be stated as follows:

Given a nonnegative nxn matrix T = (tij), find a decomposition of T, i. e., a
sequence of permutation matrices pl, p 2, ... , P q and a sequence of nonnegative
weights 11,12, ... ,lq such that

q

T < ZE lpk (elementwise) . (1)
k=1

The total duration d of the decomposition is given by d = X Ik.

The first goal in setting up a switching schedule is of course to keep the total duration as
small as possible. On the other hand, every change of the switching mode incurs a certain
overhead and loss of time. Therefore, the number of matrices, q, should not be too large.
There is clearly a trade-off between the two objectives, d and q.

Related results and results of the present paper. Inukai [19791 and Burkard [19851
have shown that the optimal total duration is equal to t°, the maximum row or column
sum of the traffic matrix, but in general, a time-optimal decomposition may require up to
n' - 2n + 2 matrices, which is too large for practical purposes. Burkard 119851 has also
given algorithm which constructs such a decomposition in 0(n 4 ) steps.

This work was supported by the Fonds zur F~rderung der wissenschaftlichen Forschung,
Project S32/01.
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G. Rote and A. Vogel: Decomposition of traffic matrices

It is clear that any decomposition must consist of at least n matrices, unless some entries
in the traffic matrix are zero. Gopal and Wong [1985] and Rendl [19851 have shown that the
problem of constructing a shortest decomposition into at most n matrices is NP-complete.
Thus, it makes sense to look for heuristics. The currently best heuristic for decomposing
into n matrices is due to Balas and Landweer [19831. A more extensive review of results
concerning the matrix decomposition problem can be found in Burkard [1991).

We propose a simple and fast "scaling" heuristic for constructing a short schedule with
a given upper bound Q on the number q of switching modes. We can prove a relative error
guarantee for the total duration d of the decomposition. The method is not applicable if
Q = n or Q exceeds n only slightly. When Q is somewhat larger than n (of the order 2n or
3n), the error bound is still very crude, but it improves as the ratio of Q and n increases.

As a subproblem, we address the problem of decomposing a matrix under the constraint
that the lower bound t* on the total duration has to be achieved; the number q of matrices
remains as the objective function to be minimized. The traffic matrices that we have in
mind for this problem are matrices with small integer entries. Here we use two heuristics:
one based on a bottleneck assignment problem and on matching techniques, and a more
powerful one which solves maximum flow problems.

As a side issue, we mention that one other subproblem that we have to solve has some
connections with voting systems.

Finally we present the results of numerical experiments measuring the actual behavior
of our heuristics for some randomly generated problems. We compare our algorithm to
the heuristic of Balas and Landweer [1983] for decomposing into only n matrices. The
experiments show that the heuristics performs very well, and that the method might be of
practical interest.

A full version of this abstract is available as a technical report, Rote and Vogel [1990].

2. The heuristics

Our algorithm is based on the simple idea of scaling the entries of the given traffic ma-
trix and rounding them to small integers. A matrix with small integers will require a
small number q of matrices for decomposition; theoretically, we will utilize the trivial up-
per bound t° on the number q of required permutation matrices. (Recall that t* is the
maximum row or column sum of the traffic matrix.)

Globally, the algorithm runs as follows:

Input: A non-negative real nxn matrix T.

(a) Choose some "unit" F > 0.

(b) Round the entries of the matrix upwards to the next multiple of F:

(c) Solve the matrix decomposition problem for the resulting matrix T (or
equivalently, for the integer matrix (uij) := (rtj/F]) obtained by di-
viding through F).'

(d) The resulting decomposition can be adjusted downwards to compensate
for the rounding up in step (b).
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G. Rote and A. Vogel: Decomposition of traffic matrices

The quality of the solution produced depends first of all on the choice of F in step (a).
The idea is to choose F so large that the matrix (ui,) consists of small integers and only
few permutation matrices are needed for its duration-optimal decomposition in step (c),
and so small that the error incurred in the rounding in step (b) is not too large. By
choosing F appropriately, we will be able to give a performance guarantee for the quality
of the solution produced by the heuristic.

Step (c) is the heart of the algorithm. The principal goal of this step, a duration-
optimal decomposition, is relatively easy to achieve, but we also want few matrices, since
their number will be the number of matrices that the solution will have. We shall discuss
three methods for carrying out this step.

Method I - simple and fast: edge coloring

Lemma 1. An integer nxn matrix U with maximum row and column sum u" can be
decomposed into q = u" permutation matrices.

Proof: If we restrict the problem to decomposition into "unit" permutation matrices, i. e.,
we allow only weights Ik = 1 in (1), then we get essentially an edge coloring problem for a
bipartite multigraph with vertices ri and ci (i = 1,..., n), with uij parallel edges between
ri and c3. In a bipartite (multi-)graph, the number of colors required (the chromatic index)
equals the maximum degree, which is equal to u* in our case.

The currently fastest edge coloring algorithm is the one of Cole and Hopcroft [1982],
which leads to a time complexity of O(u*n log n) for carrying out the decomposition. The
bound q !5 u" of lemma 1 is tight if and only if u° < (n + 1)2/4 (see the appendix of Rote
and Vogel [1990]).

The next lemma, which relates F and the quality of the solution, can be proved by quite
straightforward calculations.

Lemma 2. If F is chosen as the smallest value such that u* < Q, for some given value
Q >_ n, then the following relation holds between the maximum row and column sum Fu*
of the rounded-up matrix and the corresponding value t* of the original matrix:

Fu•* < Q t.
Q - n +

By simply choosing F in our algorithm as the smallest value which gives u* < Q, the
preceding two lemmas yield the following theorem:

Theorem. An nxn matrix T can be decomposed into a weighted sum of no more than Q
permutation matrices (Q :_ n) with a total duration that is within a factor of Qf(Q - n + 1)
of the value to that is obtainable without restriction on the number of matrices in the
decomposition.

For a positive matrix U the analysis of lemma 1 can be refined by the maximum flow
techniques discussed below to yield a bound of q :_ [(u" + n)/21. This allows us to
improve the bound Q/(Q - n + 1) in the above theorem to (Q - n/2)/(Q - n + 1/2) (for
arbitrary nonnegative matrices).

To actually determine F, we look at each row and column individually, find the small-
est F such that the sum of rtij/F1 in this row or column is at most Q, and take the
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maximum of all those F's. The problem of computing for the, say, first row of T, the
smallest F such that E-_ fttjI/F1 < Q occurs also in proportional voting systems and the

theory of apportionment (cf. e. g. Woodall (19821 or Balinski and Young [1983]). In this
case, the number F is the quota. Algorithmically, it can be determined as the (Q-n+F)-
largest element in the (infinite) array (t1,/l)1 <_,<_,>_i This array has sorted rows. We

remove from each row j of the array the first [(Q - n)tl,/•".=. tI elements. In th:s

way we remove between Q - 2n and Q - n elements, and F is the k-largest eiement in ttc

remaining array, where k is some number is between 1 and n. This element !,n be icuna

in O(n) time by the method of Frederickson and Johnson t1982]. There are also sii-pie

and practical methods which use priority queues and tace O''n log n) time. it a--y case

the complexity of the algorithm is dominated by step (c), ane. it is O(Q,, log r').

Method II - greedy: bottleneck assignment

There is no way to use the edge coloring for a decompocition into fewer than 1z- iiiatriccz.
In practice, we would like to have an algorithm which uses as few matiAices as .possible
because this would allow us to choose F smaller, and we would lose less in the roM'iaing-u;
of step (b).

We try to reduce q by the following greedy strategy: We select the first weighted permu-

tation matrix 11 P in such a way that the maximum row and column sum of the remaining

traffic matrix max(U - 11Pi', 0) is reduced by as much as possible. This will reduce the

bound u* on the number (and. hopefully, also the actual number) of further matrices which
will be needed in the decomposition. We continue this strategy with the remaining matrix
until we are done.

By analyzing the condition that the maximum row and column sum of U must be recauceG
by 11 when the matrix min(liPP, U) is subtracted, we get the following condition on 47"

If P1.= 1 then 11 _ui+(u' -max{r,,,1). :2,;

Let us interpret this formula. For critical rows (and columns), i. e., rows with r, =A

11 must be < ui,. Non-critical rows and columns have some ssack i* - ,' or u* -. :,
respectively, which allows to weaken this inequality for their elements: The smaller of th.h

row slack and the column slack for each element can be added to the bound ui.

Finding the maximum value of 11 for which such a permutation matrix P exizis is a

bottleneck assignment problem whose cost matrix is given by the right side of (2). After

determining P1 and 11, min(l:P', U) is subtracted from U. P' and 12 are determined by

the same procedure for the remaining matrix, and so on.

The sequence (11, 12,..., 1,) is weakly decreasing and consists of small numbers. There-

fore we solve the bottleneck assignment problem by testing for successive values of lk in
decreasing order. Each test amounts to finding a complete bipartite matchii~g. For this
purpose, we can use the procedure of Hopcroft and Karp [1973], which requires 0(nri,)
steps, and thus method II can be carried out in 0((q + l1)n 5 /2 ) time.

In our computational experiments we have additionally reduced l in each step, if nec-

essary, in order to ensure that the graph defined by (2) has no isolated vertices. This wes

sufficient to eliminate most of the unsuccessful tests.
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MethGd iMI - even greedier: maximum network flow

By solving a maximumn flow problem on a suitably defined graph, we can try to determine
all permutation matrices pk which belong to a group of equal lk's imtduaneouuly. Our
maximum flow problem is an extension of the matching problem of method II.

We set up a network which has two nodes for each row i: A regular source node ri and
A "slack" lacde fi. Similarly, there is a sink node cj and a column slack node ei for each
column j. For each entry ujj we have now two arcs: There is a "direct" arc from ri to
c; of capacity luiu/llJ. This capacity counts how often a permutation may use the entry
uii by reducing row and column sums ri and cj. In addition, there is a "pseudo-arc" from
.; to 4i of infinite capacity. Using this arc corresponds to reducing the slacks u" - ri and
u* - ci by lj. This usage is restricted by the capacities of the "slack" arcs from ri to fi
of capacity [(u* - ri)/lkj and from 4i to ci of capacity 1(u* - ci)/lkJ, which precede and
follow the pseudo-arc. However, when u" - ri < lk, we set the capacity of the slack arc
(ri,fi) to 1 instead of 0, but at the same time we eliminate all arcs out of fi for which
( mj ,od l') + u* - ri < l . We do the same for all columns.

This last modification ensures that, if an entry uji should be usable by criterion (2), then
there is a way to send at least one unit of flow from ri to ci. The remainder (uii mod jl),
which cannot be "used up" by the flow on the direct edge (ri, cj) of capacity [uij//kJ, is
put together with the dack u*-ri to see whether a total of 1, can be reached.

We place a constant supply and demand of value g at each source vertex r, and at
each sink vertex c., respectively. The largest value of g such that a flow satisfying all
these supplies and demands exists is the number of permutation matrices of weight lk
into which we can decompose the matrix. To find those g matrices, we decompose the
flow into "permutation flows". This can be done by the coloring algorithms of Cole and
Hopcroft [19821, which we used in method I. If g > 0, we have to try the same value of
lk again, since we may not have exhausted all possible matrices with weight lk. If we got
g = 0, we decrease l1 by one and try again.

3. Comput.Ational results

We have programmed methods II and III and applied them to randomly generated test
problems of various sizes in the range from n = 10 to n = 100. For the various sub-
procedures, we used the simplest possible implementations that did not take too much
time.

We have tried to get approximately q • 2n matrices. Some target value M for u*, which
was determined experimentally, was an input parameter of the program, and we computed
F by the formula F = 1/2 -(t°/(M - n + 1) + t°/M). We computed u" with this value of
F, and then we reduced F as much as possible while still keeping the same u*. With this
procedure, the desired number of q = 2n matrices was achieved reasonably precisely. For
step (d), we successively lowered each l&, for k from 1 to q, as much as possible while still
maintainung the relation lkP" >_ T.

The results are shown in the following table. The numbers are averages of 100 matrices
each, with random integer entries in the range 1-100 for method II (and also in the last
column), and in the range 1-1000 for method III. CPU-times are given in seconds on a
DEC VAX 11/785 computer. The measure of the solution quality, the total duration, is
normalized in terms of the relative excess over the lower bound t1, in order to make the
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results comparable for different types of matrices. For contrast, the last column contains
the results of the heuristic of Balas and Landweer [1983] for decomposing into only q = n
matrices. Of course, this is not a fair comparison because their heuristic solves a more
restricted problem. Still, one can see h6w much may be gained in total duration by allowing
more than n matrices, in particular for smaller n.

Method II, q z: 2n, entries 1-100 Method III, q ,z, 2n, entries 1-1000 o B&L, q = n
n M CPU-time (d - t)/t M CPU-time] (d - to)/t' * (d -*)/It.

10 220 0.20 1.007% 350 0.87 0.598% 7.84%
20 450 1.16 1.480% 720 4.49 0.993% 5.13%
30 700 3.40 1.648% 1200 12.68 1.014% 5.47%
40 1050 7.57 1.596% 1800 27.49 0.962% 4.05%
50 1400 14.07 1.504% 2500 31.31 0.884% 2.68 r
60 1750 23.51 1.460% 3200 84.62 0.847% 2.36 %
80 2600 53.09 1.375% 5000 193.25 0.743% 2.62%

100 3900 100.57 1.121% 7000 361.22 0.683% 1.78%
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Extended Abstract

1 Introduction

Simuiated annealing (SA) [17] is a widely used method for combinatorial optimization

problems. If this method is designed for optimization over continuous variables, i.e.

rainjf(x) I x E M g W}, a close relationship between Simulated Annealing and so-

called Evolution Strategies (ES) [21][24](25] can be noticed. This is why several results

for ES algorithms can be used to design efficient parallel SA algorithms.

The study of convergence to the global minimum of SA has mainly concentrated on the

case of a finite or countable state space (see e.g. the review of Romeo and Sangiovelli-

Vincentelli (221). For continuous state spaces there are results in form of stochastic

differential equations [1][10][11], whereas a proof of original SA is given by Haario and

Saksman [13] for generai state spaces.

In this paper the differences and similarities of SA and ES algorithms and their im-

plications for convergence results are investigated. It turns out that it is necessary to

4adapt the sampling distributions over time to achieve a reasonable convergence rate

and it is shown by example that the gain of multiple trials from a single point is low.

Therefore the algorithm is modified so that it can be executed on a SIMD parallel corn-
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puter. This algorithm is much more reliable than multiple trial SA which is supported

by some preliminary test results.

2 Markovian Optimization Algorithms

Sequential variants of SA and ES algorithms can be studied in the general framework

of markovian processes. The general algorithmic frame can be formulated as:

choose Xo E M C_ W' and set t = 0

repeat

Y'+i = X, + Zt

x,+j = t+l . a(x,, Yt,+; .) + X,.- (I - a(X,, t+,; .))

increment t

until termination criterion applies

where a(z, y;.) denotes the acceptance function which may depend on additional pa-

rameters. The distribution of random vector Zt is chosen to be symmetric, i.e. z A B z

for every orthogonal matrix B. In this case z may be expressed in its stochastic rep-

resentation z A r u, where r is a nonnegetive random variable and u a random vector

uniformly distributed on a hypersphere surface of dimension n (see e.g. [9]). This re-

veals that the trial point generation mechanism of the above algorithm is equivalent to

that of a random direction method with step size distribution r (see [19][20]).

Depending on the choice of the acceptance function a(x,y;.) and of the generating

distribution of z one gets a family of markovian optimization algorithms which can be

identified by a sequence of transition probabilities (Pt)tEN:

Pt(z, A) = f Qo(x, dw) qu(z, w)dw + IA (X) f Qt(z,dw) (1 - qt(x,w)) dw (1)
A M

with A C M, z E M and where Q denotes the generating distribution, 1A the charac-

teristic function of set A and qt the acceptance probability function which is related to

the acceptance function at via

at(x, y; l) = 1o,,,q(z.y;.)#(e) , (2)

where ý is a random variable uniformly distributed on [0,1]. Typical examples are:

q(z,y;.) = l•(f(z)-f(y)+T) (3)
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q(z,y;.) R+(f(X)-f(Y)) (4)( f=)f ) (5)
=(TY- 1,R.(f(--)-f(Y))+1]R-(f(X)-f(Y)).eXP K AX A ) (5

where (3) is used by threshold accepting methods proposed by Dueck and Scheuer [8]

for combinatorial problems add tested by Bertocchi and Di Ordoardo [2] for continuous

variables, whereas (4) is applied by evolution strategies and (5) by simulated annealing

Usually, the sampling distribution is chosen to be a uniform distribution on bounded

regions, e.g. fixed [31][16][30] or adapted hypercubes [291114][6] and fixed [4] or adapted

hypersphere surfaces [3]. Since it is not possible with those distributions to reach each

state in M when being trapped in a local minimum one has to provide the algorithm

with the chance to perform some steps with worse objective function values to escape

from local minima. This is realized by using (5) in (2). However, in order to establish

convergence at all the probability of accepting a worse point has to be decreased to zero

over time. The result of Haario and Saksman [13] indicates that the rate of decrease

has to be logarithmic as in the finite case.

Using this cooling schedule the rate of convergence is rather slow. Hence, other sched-

ules are used in practical applications (see table 1) which serve with faster but possibly

nonglobal convergence. This problem can be circumvented by an appropiate choice of

the generating distribution. Indeed, if M is bounded one might use the uniform distri-

bution over M and global convergence for continuous functions follows from standard

arguments (see e.g. [71) with T, - 0. Szu and Hartley [271 claim that global convergence

can be established by employing a multidimensional Cauchy distribution with density

g(Z) = K. T (T2 + II:ll2)("+1)/2 which concentrates around 0 caused by the sched-

ule Tt = To/(t + 1). The advantage opposed to sampling distributions with bounded

support is due to the fact that for each trial there exists a (small) probability to reach

any state. Actually, under some conditions no cooling is necessary at all such that (5)

becomes equivalent to (4) and global convergence can be guaranteed.

THEOREM I (see e.g. [26J[181)

Let f* > -oo and for the Lebesgue measure of the level sets /(Lf.+,) > 0 for all e > 0.

If

, Q(XiLf.+.) = oo w > 0 (6)

then f(Xt) --+ f* with probability one. 03
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cooling type schedule references

geometrical Tt = cS To with c E (0, 1) [29][31][30][6][31

subtractive Tt = max{0, To - t AT} [14]

linear T, = TO/(t + 1) [271[28]

function value Tt = a f(Xt) + f6 [41

Table 1: Typical cooling schedules used in practical applications

For instance, let Q(Yt+1 - Xt) be multinormally distributed with zero mean and covari-

ance matrix Ct = oa I, where min{or, It > O1 > a > 0 and f(z) -- o for JxI4 --+ 0o.

Then, the lower level sets are bounded and there exists a minimum positive probability

to hit the level set L .+,. Thus, liminfQ(Xt,Lj.+,) > 0 and the sum in (6) diverges.

Although global convergence of the above type should be the minimum requirement

of a probabilistic algorithm it is more interesting to know something about the finite

time behavior, i.e. the rate of convergence. For finite state space it is known that the

convergence rate of the probability to reach the optimal state is of order 1 - O(t-6) with

a > 0 depending on the problem (see Chiang and Chow [5]). This is slow convergence

since the rate of convergence of pure random search is of order 1 -O(,6') with # E (0, 1).

Another measure of convergence rate is the expected error defined by 6, := E[f(X,)-f*].

It can be shown that 6t = O(t-0) for fixed sampling distributions even for strongly

convex functions [19]. However, if the distribution of Z, 1 rt u is adapted via rt =

IIVf(xt)llr, where r has nonvoid support on (0,s), then one gets 6, = O(0') with

fi E (0, 1) for objective functions with "sufficiently spherical" level sets close to the

minimizer, e.g. strongly convex functions [19][20]. It can be shown that a success/failure

control as proposed in [21] can be used, too. If it would be possible to adapt and

concentrate the sampling distribution to the lower level sets geometrical convergence of

6t can be shown even for lipschitz-continuous function with several local minima [32].

3 Parallel Simulated Annealing

Markovian algorithms considered so far are not well suited for parallelization. For

finite state space variants some proposals are surveyed in [12]. A straightforward way

to take advantage of parallel hardware is to perform, say p, trials in parallel on p

processors and to select the best move. This is the idea of so-called (1,p)-Evolution
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Strategies [25] and it can be used for SA as well [3]. However, a simple example

reveals that' the speedup is poor even for convex functions: Let f(z) = IIzX1 2 and

M = WR". Then the convergence rate of the sequential version using criterion (4) can

be estimated to be 6b, (1 - b.405/n)* (f(zo) - f°) for large n, whereas for the (1,p)-

ES holds 6t ; (1 - 2 log(p)/n)' (f(xo) - f*). It follows that the expected speedup is

E[Sp] = O(log p).

Another straightforward parallelization scheme is to run the sequential algorithm on

p processors independently [3] as a parallel version of the well-known multistart tech-

nique. This is well suited for SIMD parallel computers which perform the same in-

struction on p processors in parallel but on different data streams as well as for MIMD

parallel computers which can simulate SIMD programs [23].

The general idea of Evolutionary Algorithms is to view the trial vector as the genome

of an individual that is mutated by the sampling distribution. Choosing the better trial

point for the next iteration/generation can be regarded as selection . It can be shown

that simply placing one individual on each processor (the processors are arranged in a

torus topology) and performing selection among the nearest neighbors is less reliable

than parallel multistart. However, introducing a recombination mechanism provides

the parallel algorithm with a new quality: Before reproducing a new trial point, another

individual is selected from the neighborhood and the genomes are merged. With this

mechanism it is possible to push individuals out of local minima. In biological terms,

the population becomes or keeps more diversity increasing the chance to find the global

minimum. Preliminarily test results support this hypothesis.
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I. Introduction

Duality is routinely used in conjunction with simplex-based algorithms for lin-

ear programming. In conjunction with interior-point methods, the same can

hardly be said. Although it has been used in the design of many interior-point

algorithms[1],[51,[6], its role in postoptimality analysis and structure exploita-

tion when these algorithms are used, is not fully investigated.

The problem of postoptimality analysis is central to optimisation in general

and linear programming in particular. It relies heavily on the duality concept

without which linear programming would not be such a powerful decision

making tool. It is concerned with the stability of the solution set of a given

LP problem when perturbations occur in the input data. Here, emphasis will

be on discrete changes only.

Structure is also an important aspect of linear programming. A lot of

effort has gone in designing algorithms which take advantage of structure in

general linear programmes but without much success (2]. These algorithms are

almost exclusively simplex-based. Looking into ways of exploiting structure

whea interior-point methods are used is therefore an interesting challenge.

The concern here will be with common structures such as block-angular and

staircase.
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To deal with these questions a variant of Karmarkar's algorithm which

generates dual variables will be used.

The question of implementing this variant will be addressed in Section 2.

In Sections 3 and 4 ways of extending it to deal with postoptimality analysis

and structure respectively will be investigated. Section 5 will discuss compu-

tational results and conclusion.

2 A dual variant of Karmarkar's Algorithm

The dual variant of Karmarkar's algorithm considered in the present work is

based on an algorithm that can be found in one form or another in [l],[5],[6].

It handles LP problems in standard form with bounded and non-empty feasi-

ble regions. No assumption is made about degeneracy and the algorithm has

polynomial complexity. An important feature of the algorithm is the way in

which improved lower bounds on the objective function value are found. The

set from which these bounds can be chosen will be explicitly given. Some com-

parative results concerning robustness between this algorithm and a standard

simplex routine on Hilbert type LP problems will be reported.

3 Postoptimality Analysis

Postoptimality analysis considers variations in the coefficients of the problem

with a view to assessing how sensitive to these variations is the optimum

solution which has been obtained. When simplex-based algorithms are used

the process of postoptimality analysis can be conducted without difficulty.

The crucial question is whether this process in the case of Karmarkar-type

algorithms is of similar difficulty and can be done with similar efficiency. It can

already be said that given the way in which optimality is checked in interior-

point methods, postoptimality is never going to be easy and cost effective.

In fact our limited investigation points to the use of standard results such as

the complementary slackness conditions, which are independant of the method

used to solve the LP problem, to conduct postoptimality analysis.
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4 Structure Exploitation

In [4] an extension of the algorithm mentioned earlier to structured LP (block-

angular and staircase) has been given. In that extension, structure exploitation

was at the level of the computation of the dual solutions, which is the most

expensive step of the algorithm. It relies on the updating algorithm for least

squares of Heath [3].

The way staircase structured problems are handled is by means of problem

manipulation so that a block-angular structure is arrived at. However, the

resulting block-angular problem has a linking block with many columns. The

updating algorithm, which includes the solution of a square system of linear

equations of the form (I + FFT)u = r where F = (F1 F2 ...Fj) and Fi =

ATR?-', A being the linking block, would, therefore, not be effective. However,

the linking block is also structured and the structure is carried through to

the system of linear equations, (see diagrams below); partitioning it to take

advantage of its structure appears to be an attractive way of improving the

updating step.

5 Computational Results and Conclusion

Experiments with well known difficult LP problems show that the dual al-

gorithm considered here is robust. The extended version has been tested

on block-angular problems. It leads to good speed-ups as the results show.

Postoptimality analysis is made possible as dual solutions are available. How-

ever, it does not seem to be easily conducted via the interior-point method

considered. Much work needs to done before any conclusion can be reached.
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MARKOV DECISION PROCESSES WITH RESTRICTED

OBSERVATIONS: FINITE HORIZON MODEL
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In this report, we develop an algorithm to compute optimal

policies for Markov Decision Processes subject to the

constraints that result from some observability restrictions

on the process. We assume that the state of the Markov

process under consideration is unobservable, but -here is an

observable process related to the original one. So, we want

to find a decision rule depending on this observable process

only. The objective is to minimize the total expected

discounted cost over a finite horizon.

Restricting the policies, as explained above, results in a

nonlinear programming model. The solution procedure for

this nonlinear problem is a method of feasible directions

(Bazaraa and Shetty(1979), Luenberger(1973)) that uses

special structure of the problem. On the other hand, it is a

policy iteration method that iterates between feasible

policies.

1. PROBLEM DEFINITION: Consider a Markov Decision

Process (MDP) ((Xt, At): t=l, ... , T ) where Xt is the state of the

system and At is the action chosen in period t, t=l, ..., T. We

use period t or epoch t to mean there are t periods to go until

the end of the planning horizon. Let S=(I, 2, .... N) be the
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state set and A=(1, 2, ..., M) be the action set. The transition

probability law of the MDP is Pij(a)=P(Xt-.=jl Xt=i, At=a) for all

i, jES, aEA. Let P(a) be the transition matrix under the action

aEA and C(Xt,At) b-e the cost incurred at time t with expected

value cia=E(C(Xt,At)l Xt=i, At=a). We assume that cia for all

iES, aEA, and P(a) for all aEA are known. A nonstationary

Markovian policy can be described by a iat=P(At=aI Xt=i) for

all iES, aEA, t=l, .... T: CXERNMT.

Let S = {S1, S2 ...., SK) be a given partition of the state space.

Suppose, at decision epoch t, the state of the process Xt can

not be observed, but only the subset, say Sk, that Xt belongs

to is known. So, a practical decision rule is defined

depending on only Sk at period t, rather than Xt, and the

same decision is used for every state in Sk. We define a

random variable Zt as Z=k if and only if XtE Sk and call Zt

the observation variable. The process (Zt, t=l, ..., T) is

called the observation process. So, the observation

variable Zt takes values from the observation set 0,

O=(1, 2, ... , K). A policy CX is called a policy with respect

to the partition 3, if CXiat=-Xkat for all iESk, aEA, kEO, t=l,...,T.

and satisfies
MI a kaP I for all kEO, t=--I ..... T (I.lIa)

a=-I

a kat2 0 for all kEO, aEA, t1, ... , T (I.lb)

In the remaining part of this report, we assume that we are

given a fixed partition S of the state space. Also, we mean

completely observable MDP by an unrestricted MDP and the
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MDP under observability constraints by the restricted MDP

with respect to partition S. Clearly, we must have

caiat=P(At=aI Xt=i) for aEA, iESk, kEO, t=l, ..., T (1.2)

=P(At=ai XtESk)

=P(At=al Zt=k} for aEA, kEO, t=l, ...9 T

-- L kat

The aim is to find a policy (X * with respect to partition S that

minimizes expected total discounzed cost over T-period

horizon. The same problem under infinite horizon is studied

in Serin(1989) and Kulkarni and Serin(1990). This problem

can also be considered as a partially observable MDP

problem (Monahan, (1982)). The methodology used here is

different from partially observable Markov Decision Process

methodology.

2. MODEL AND THE SOLUTION METHOD: The optimal

policy for the unrestricted MDP problem can be found by the

probabilistic dynamic programming c,-oving backward period

by period. The optimal expected total discounted cost of a

policy OL over a t-period planning horizon starting with an

initial state i, v'i, satisfies

Vi= minimum cia+Y{ PiNa) v*j(t-1 ) (2.1)aEA j-1

for all iES and t=l, ... , T, where y is the discount factor. A

constant value is assigned to voj0's (Hillier and Lieberman,

(1974)), e.g., vj 0 =0.

We can state the expected total discounted cost minimization

problem for unrestricted MDP by the following linear

programming problem
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Minimize I I Cis Yiat (2.2a)
i=l a=l t=1

subject to
M

M YiaT = Pi for all iES (2.2b)
a=1

M NI{Yiat- YXYja(t+1)Pji(a) =0 for all iES, t-1 .... T-1 (2.2c)
a--I j=1

Yiat2 0 for all iES, acA, t=l, ..., T (2.2d)

where the decision variable Yiat can be interpreted as the

discounted probability of being in state i and taking action a

in period t, pi is the probability of being at state i at the

beginning of the planning horizon. Then, the optimal solution:

yrat y(T-t) Po*(Xt=i, At=a) for all iES, aEA, t=1, ..., T (2.3)

The optimal policy a * is given by

*ia

Cx*iat - y at for all iES, aEA, t=-, ..., T (2.4)
M

I Y*iat

a=1

= Po,*(At=al Xt=i)

and a * satisfies (1.la) and (1.lb).

At a basic optimal solution, Yiat can take a positive value for

at most one action, which is in accordance with the

implication of recursion (2.1), i.e., the optimal policy is

deterministic. If it is not possible to be in state i at some

period, some arbitrary action is assigned to that state (Ross,

(1989)).

Now, we may define wit as the discounted probability of

being in state i at period t under a given policy ct, i.e.,
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Wit - y(T-t) P*(Xt--i) for all iES, t=l, ..., T (2.5)

Yiat = wit tiat for all iES, aEA, t=l, ..., T (2.6)

Now, we are ready to consider the above MDP under

observability constraints. -Suppose that {Zt: t=l, ..., T) is the

observation process defined over 0=[1,..., K) characterized by

a partition S=(SI, ... , SKI. If C is a policy with respect to

partition S, then the probability of taking action a at some

period t is the same for all the states in the same subset.

Then, observability constraints in (1.2) with respect to

partition S are introduced by imposing

ox iat= o jat for all i, j pair in the same subset

=akat foralli,jcSk

to the feasible policy space of unrestricted MDP problem.

Pij (x, t) is the probability of being in state j when there are

(t-l) periods to go until the end of the planning horizon,

given that the system is in state i when there are t periods to

go until the end of the planning horizon and when the policy

ox is employed,

Pij(Q, t) = POA(Xt.l=jI Xt=i)
M

= O tk(i)atPila) for all t=2, ..., T and i, jcS (2.7)
a-l

and cia((x ) is the expected immediate cost incurred under

policy a , given that the system is in state i at the beginning

of the period t
M

Cit4O) = I Ctk(i)atCia for all iES, t=l, ..., T (2.8)
awl

and the cost vector in period t is

Ct(a) - (clt(a), C2t(CL), ... , c Vt(O ))' (2.9)
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The optimal policy a * with respect to partition S for a MDP is

given by the solution of the following problem.

Problem D:

Minimize

T- (T-t)cID(Ot)= P' c -(oL ) + -7 y T~ ) ... P(at, t+l)ct(oL) (2.10a)

t=I

subject to
M

I akat= 1 for all kEO, t=l, ..., T (2.1Ob)
a=1

aTkatŽ 0 for all kEO, aEA, t=l, ..., T (2.1Oc)

Note that there is a deterministic global optimal policy to

Problem D.

In order to obtain a solution to this problem, we use the

method of feasible directions (Bazaraa and Shetty, (1979)).

The algorithm we develop iterates between deterministic

policies, using the fact that there exists a deterministic global

optimal policy to Problem D. In order to guarantee

improvement at each iteration from one deterministic policy

to another, a descent direction is selected in such a way that

the policy improvement is achieved through changes in the

partial policy of only one period, although there may be

other periods implying improvement, i.e., contributing the

directional derivative with a negative value. Proceeding

along such a direction causes improvement at a constant rate.

Then, if the search procedure starts with a deterministic

policy, iterations occur between deterministic policies by

taking a step of size one at each iteration.
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As in the case of policy iteration algorithm of Howard(1971)

for unrestricted MDP, the algorithm proceeds along the

steepest descent directions satisfying above conditions.

3.CONCLUSION: Using feasible descent directions that

change the partial policy of only one period at an iteration

may cause the algorithm to terminate after a large number

of iterations. Another disadvantage of the algorithm is the

risk of termination with a deterministic local optimum or

saddle point in spite of the fact that there may exist a

randomized local optimum or a saddle point with a lower

expected cost. The reason is that, algorithm does not take

randomized policies into account. Along the line between two

deterministic policies of two successive iterations of the

algorithm, there can not be any point satisfying necessary

Kuhn-Tucker conditions, because the expected cost function

decreases linearly. However, there can be randomized

policies which do not lie on any such line.

We propose another algorithm for solving Problem D which

allows changes in partial policy of every period in an

iteration and proceeds along the steepest descent directions.

Directions making changes in more than one period cause the

expected cost function to be a nonlinear function of step size.

Then, for minimizing the cost function along such directions,

the policy improvement step must include a line search,

which is the computational burden of this algorithm and may

slow the algorithm in terms of the computation time

required until termination. On the other hand, it may
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decrease the number of iterations. In that case, randomized

policies can also be encountered.
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1. Introduction
Consider a connected undirected network G = (NU {O},E) with a set of nodes

NU {O) and a set of arcs E. The subset D, D C N, is the set of communities (users).

A common supplier 0, provides service which is required by the communities, and any

community receiving the service can in turn deliver it to adjacent communities. Each

community in D is required to be connected, perhaps through other communities, to a

common supplier. There is a cost, w((ij)) = wij 2_ 0 , (i,j) E E, if arc (i,j) is used to

deliver service. The objective is to provide service to the communities in D at a

minimum cost. We will refer to the above optimization problem as the minimum cost

Steiner Tree (ST) problem.

We provide in this paper a computational analysis of a game theoretic

approach to a cost allocation problem arising in a minimum cost ST-problem. The

cost allocation is concerned with the fair distribution of the cost of providing the

service among customers. We formulate this cost allocation problem as a cost

cooperative game in characteristic function form, referred to as the ST-game. In

general, the ST-game generalizes several cooperative games studied in the literature

which were used to analyze a variety of cost allocation problems. For example, the

class of ST-games properly generalizes the class of minimum cost spanning tree games

(Bird (1976), Granot and Huberman (1981, 1984)), tree games (Megiddo (1978)) and

airport games (Littlechild (1974)). ST-game is equivalent to the Fixed Cost Spanning
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Forest (FCSF) game which was studied by D. Granot and F. Granot (1990) for a

special case when the underlying network G has a tree structure. They show that in

this very special case the core of a FCSF game is not empty. We extend the analysis to

general networks. Work in this paper is also related to Sharkey's (1990) study of the

shared facility game. Therein, he defines a simple game, and shows that the core of a

simple game is nonempty if and only if the optimal values of the respective objective

functions of associated IP (Integer Program) and LP (Linear Program) are equal. Here,

we analyze the relationship between certain IP and LP associated with the ST-game

(note that ST-game is not a simple game).

It is shown that in general the core of a ST-game may be empty. Our main

iesult provides a sufficient (and in some cases necessary) condition for the

nonemptiness of the core of the ST-game. It turns out that the core is not empty if the

incidence vector of an optimal ST coincides with an optimal solution to a certain linear

programming problem. We also show that the reverse is not necessarily true. Further,

given an optimal ST, we construct an 0(n3) algorithm (where n is the number of

nodes) which verifies whether the above sufficient condition is satisfied. Moreover, if

the answer to the above algorithm is positive it generates a cost allocation vector in

the core.

This extended abstract is organized as follows. In Section 2 we review some

standard definitions and introduce some notation. In Section 3 we provide sufficient

condition for the nonemptiness of the core of the ST- game. In Section 4 we present an

efficient algorithm to check whether the sufficient condition for the existence of the

core allocation is satisfied and in case of favorable answer we provide a point in the

core of the ST-game. Finally, in Section 5 we give some concluding remarks.

2 Definitions and Preliminaries
The minimum cost ST problem can also be formulated for directed graphs.

The minimum cost Directed Steiner Tree (DST) problem is defined with respect to a
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directed weighted graph G = (NU {O),E) with a weight function w: E - R+. Namely,

given a subset of nodes DC_ N; find a directed tree T= (NTU({O},ET) in G, rooted

away from node 0 and whose node set contains D, such that the total edge-weight of

T is minimum. It is clear that any minimum cost ST problem can be solved by

considering an appropriate minimum cost DST problem, obtained by replacing each

edge of the given network by two arcs of opposite directions.

In order to analyze the cost allocation problem associated with the minimum

cost ST problem, we formulate this cost allocation problem as a cooperative game.

Consider ST problem on a network G= (NU{O, E), with a set o.- users DC N.

Denote by STQ, for Q C D, the ST problem obtained from tUie original problem by

simply replacing D by Q. Then, the pair (D,c), where c:21DI-.R is such that c(O) =- 1)

and for each Q C D c(Q) is the minimum objective function value of STQ, is a game

to be referred to as the ST-game. For XE RIDI and QC D, let zx(Q) =- F-) E Q:." We

can interpret x(Q) as the part of the total cost paid by the coalition Q. A coat

allocation vector z in a game (D c) satisfies x(D) = c(D), and the solution theory of

cooperative games is concerned with the selection of a reasonable subset of cost

allocation vectors.

Central to the solution theory of cooperative games is the concept of solution

referred to as the core of a game. The core of a game (D; c) consists of all vectors

z E RIDI such that z(Q) _ c(Q) for all Q g D, and :(D) = c(D). Observe that the core

consists of all allocation vectors r which provide no incentive for any coalition to

secede.

3 The Core of the ST-Game

It was shown by D. Granot and G. Huberman (1981) that the core of the ST.

game is not empty when all nodes are communities i.e D = N. Unfortunately, this

result cannot be extended to cases when D A N. Indeed, a simple example below

(shown to me by A. Tamir) demonstrates that the core of a ST-game may be empty.
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Explicitly, consider the directed network G = (NU {O), E) shown in Fig. 3.1

below. Therein, N= {1,2,3,4,5,61 , and D = { 1,2,3) is the set of communities.

Further, we assume that w(ij) = 1 for all (ij) E E.

The core, C(D,c), of-the ST-game associated with network G is given by:

C(D,c)={xER3: z1 <2, z2 -<2, x3<_2, x1+z2: 2 3, xj+z 3 •_3, x2+zý_3,

z1+Z+Z 3 =5}

3

0 5

Figure 3.1 G = (N, E)

Now, one can easily verify that the core constraints induced by the three two-members

coalitions imply that x1+z 2+ 3 _< 41 for any core allocation. Thus, since any core

allocation x must distribute the entire cost, i.e., zl + z2 + z3 = 5, we conclude that the

core of the ST game associated with G, displayed in Fig. 3.1, is empty.

Below, we provide a sufficient condition for the nonemptiness of the core of the

ST-game. It is based on integer programming formulation of the minimum cost DST

problem used in Prodon et. al. (1985). To describe their formulation, as applied to our

minimum cost DST problem, we need the following notation. Let G = (N U {O}) be a

directed graph and D, D C N the set of communities. For a directed edge I = (i,j) we

refer to i as the tail and j as a head of I , and for a subset of vertices S, S C N, we

denote by 6(S) the set of all directed edges having their heads, but not their tails, in S.

A subset S, SC N, is said to be an admissible cut-set of G, if, Sn D 4 0 (D is the set

of communities) and both subgraphs G(S) and G(NU {O) IS) of G induced by S and

NU (0) IS, respectively, are connected. We denote by A the set of all admissible cut-

sets of G. Now the DST problem can be formulated as the following integer
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programming problem: IP(D): main {cx: x(6(S)) ! 1, SE A, Sn D A0, XE {0,I} }.

Then, our ST-game based on the above formulation of the DST problem is the

pair (D,c), where c:2IDI--R is such that c(O) =0 and for each QCg D, c(Q) is the

minimum objective function value of J'P(Q).

Clearly, the exponential number of core constraints, coupled with the fact that

IP(Q) is NP-hard whenever 2 < IQI < IM, makes the core computations hard. We

provide some shortcuts that enable efficient computation in certain cases.

Consider the linear programming relaxation LP(D) of IP(D) defined as follows:

LP(D): mmn cz: 46(S)) Ž 1, SE A, D :D$0, x>0}

In, view of favorable computational results obtained by Prodon et al. (1985) and

Chopra et. al. (1992) with instances of the DST problem on general graphs, they were

led to conjecture that the inequalities describing the feasible region of LP(D)), while

not sufficient to describe the polyhedron for the DST problem, are nevertheless

important in the sense that they often produce optimal integer extreme points.

However, notwithstanding this favorable computational experience, LP(D) would fail

to produce optimal directed Steiner trees even for the very simple case like network G

in Fig. 3.1. Indeed, consider the directed network G given in Fig. 3.1. All the edge

weights in G are assumed to be 1 . Then, it is easy to check that the minimum cost

DST in G, with root 0 and whose vertex set contains vertices 0, 1, 2, 3, has a weight

of 5 . However z* E R defined as follows: Zo 4 )-•, z ) Z(0 ,6 )-1, (4,1 )-+ _14) 2 j*5= _1.)= * _1 * _

, 0 ( I(,) z(1 )-- 61 =, and z -0 otherwise, is feasible to

LP(D) associated with G and has a lower objective function value of 4.5.

Nevertheless, LP(D) is still useful for the analysis of the ST-game. Indeed, we

show that sufficient condition for nonemptiness of the core of the ST-game is that

linear programming relaxation of LP(D) has integral optimal solution.

THEOREM 3.1 If the incidence vector of a minimum cost DST in G, rooted away

from 0 and whose vertex set contains D, is an optimal solution to LP(D) , then the
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core of the associated ST-game is not empty. 0

Next we show that the sufficient condition given in T.3.1, in general, is not

necessary for the nonemptiness of the core.

Figure 3.1 G1 = (N U f0), N)

Indeed, consider the network G1 = (N1 U {0, E,) in Fig. 3.2. Assume that all edge

weights in G, are I and let DI = {5,6,7) be the set of users. An optimal solution to

IP(DI) is indicated by bold arcs and has total weight c(D,) = 6. It is easy to check

that vector (z5 ,z6,z7) = (2,2,2) is in the core C(D,,c) of the associated ST-game. On

the other hand one can verify that z* E R+E defined as follows: o)-1 ,* _

=1 0* 1 1 . 1 ad1 *z1 01
'(1,4)-2' Z(2 ,5 )=!' '(2,6)=2' r(3,6) 2' Z(3,7)-2' -(4,5)=2' -(4,7)=2' (ij)

otherwise, is feasible to LP(D1 ) associated with G, and has the objective function

value of 5.5.

4 The Core Algorithm
Whenever we can find the optimal minimum cost ST, we can efficiently test

whether the sufficient condition for the nonemptiness of the core of the ST-game, given

by T.3.1 is satisfied. We construct the algorithm which is a modification of Prodon's

et. al. (1985) T-guided heuristic for finding a minimum cost DST. We prove that our

algorithm will terminate with a dual feasible solution, whose corresponding objective

function value is equal to the weight of T if and only if the incidence vector of T is an

optimal solution to LP(D). In addition to that, if the algorithm delivers optimal dual

solution, it also immediately generates point(s) in the core. The algorithm uses only
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quadratic number of simple constraints and overall takes 0(n3) time.

Let T= (NTU {O},ET) be an optimal DST rooted in 0. Number nodes in T

starting with assigning zero to root 0 and {1, 2 ,..,INTI ) to nodes in NT in such a way

that for every k E NT all successors df k have numbers greater then k. For k E NT, let

Tk = (NkU {p(k)1, Ek) be the subarborescence of T rooted in the unique immediate

predecessor p(k) -of k. The following algorithm often produces point in the core C(D,c).

THE CORE ALGORITHM

For k = I NTI , ... 1, scan k as follows:
begin

while uwp(k),k) > 0 and there exist S E A such that
Sn(NTU{01}Nk)=0 and w(e) >0, for all eE6(S) do

find minimal such set S,
y = minf u<e) : e E b(S)I,
ue) = w(e) - Ys for all e E 6(S),
pick up an arbitrary node I E D n S and update z, = + yS,

end
end

THEOREM 4.1 Let z E RD be the vector obtained by the core algorithm. Then for

all S_ CD,x (S) < c(S). 0

Let A represent the maximum fraction of total cost that can be distributed

while satisfying the core constraints. That is :

A = max {4(D) s.i. (S) < c(S) for all SC D)/c(D).

(Bounds on A for some special cases of the underlying network G are presented in

Sharkey (1992)).

COROLLARY 4.2 Let zE RD be the vector obtained by the core algorithm. Then

r(D)/c(D) is a lower bound on value of A. 0

THEOREM 4.3 The vector ZE RD obtained by the core algorithm is in the C(D,c) if

and only if the incidence vector of optimal DST is optimal solution to LP(D). 0
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5 Summary
In this paper we provided sufficient condition for the nonemptiness of the core

of a ST-game. We also developed an efficient algorithm that gives us a lower bound of

the maximal total cost that can be distributed while satisfying core constraints. We

prove that this algorithm will generate point in the core if and only if the optimal

objective function values of associated IP(D) and LP(D) are equal. Computational

experiments witl DST on general networks performed by Chopra et. al. (1992) and

Prodon et. al. (1985) indirectly confirm that our algorithm will often produce core

points or will offer a good approximation for a core point.
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AnSTLACT V = A finite set of nodes(vertices) which represent mn-
chine centers, i = (1, 2,..., N)

In this paper we examine a class of nonln- A = A finite met of arcs which may represent the me-
ear, stochastic knapsack problems which occur in terial handling trnasfer systems.

manufacturing, facility or other network design r = An incidence function wohich regulae the flow or

applications. Series, merge & split topoloAie y r quting wokpi mzto problem can be
Of serics-parallel MIM/11K and MIMIC/K decomposed into a set of three inter-related optimization
queueing networks with an overall buffer con- problems [24].
straint bound are examined. Bounds on the
objective function are proposed and a sensitiv- 1. Topological Network Design Problem (TND) The

ity analysis is utilized to quantify the effects of topology of the network can be identified as & com-
bination of one or all of the three classes of network

buffer variation. on network performance mea- topologies, viz. i)series, ii)splitting, and iii)merging.

sures. This problem deals with finding the best topology

eo - Buf Acation, Stochastic. N r K of the nodes and the arcs.

**€* 2. Routing Network Design Problem (AND) This deals
with routing of the flow of entities along the arcs in

1 INTRODUCTION the given topology. The research problem studied
in this paper also assumes that the topology and

Stochastic networks of service centers with variable ser- routing of entities in the network has already been
vice rates and finite waiting capacities (buffers) occur in identified.
many network design applications such as manufacturing
facilities, communication networks and vehicular traffic 3. Constrained Network Design Problem (CND) The
systems,. One of the most challenging tasks of the net- general research problem is concerned with the al-
work designer is to allocate buffers at each service center location of resources, such as the numbe: oZ serers,
while keeping in mind the total capacity of the network, buffers at each of the servers, assuming that the

TND and RND problems have been solved. This pa-
2 CONSTh.IMBD NuTwomi DZsioN (CND) per deals only with allocation of buffers at each node

PlOBLuM in the network given the constraint that the sum of
the number of the buffers for the entire network does

This section discusses the research problem, the inherent not exceed a maximum limit set for the network. An
complexities of the problem, various optimisation tech- extension to the simultaneous problems of routing
niques, then proposes a methodology to solve the prob- and buffer allocation is also discussed.
lem.

The analysis of a queueing network is highly dependent 2.1 Assumptions
on the topology of the nodes and arcs of the network. We
can ammue a Graph G(V, A, F) where The aumptions for the analysis are " follows

"D-aDepssm of a ladusisist EMaassad mad Operseim Re. 1. The Graph G(V, A, F) has been identified i.e. the
search UAiversityr a Mssseclawt Anamest Mamossics 01003 tlye of topology, number of nodes, are# connecting

DoCNKm . 2. 1. 0
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the nodes and the routing of the entities wthin G 2.3 Proposed Methodolog
arc gien. Since there is no dosed-form expression for estimating

2. There are N nodes in the layout. the objective function of a finite queueing network, the

S. Once the service on a product u compkieted at the only way of finding the sub-optimal buffer allocation is

o to employ an iterative method, which estimates the oh-
& node, U ismoved to the it node wt r ng jective function for a set of buffers at each iteration, finds
probabiity r. i, there is no room at the J", node, the direction of optimally and changes the buffers atthe "em i blocked, nodes in a manner such that the objective function is

4. Arrivals to the network are Poisson with mean ar- increased until a set of convergence standards ae satis-
r.val rate A. fled.

One of the keys to our study here is to develop per-5. Service times at the iOh node are ezponeniIllV d&@- formance bounds on the objective function value so that
I...uted writh the mean rate N. when the optimal search procedure is carried out, we can

t. The first node in the networ* is never starved and have a robust and stable technique for searching for the
:he final node sn the network is never blocked, optimal values of the design variables.

We will first present the bound for the methodology for
1.2 Mathematical Model M/M/1/K queues, where the customer is lost if blocking

occurs in the topology, then the bound for a delay system
The CND problem has the following basic objective func- and, finally, the bound for MIMIC/K queues.
tion for general network topologies:

3 Dzs1GN MmTHODOLOGY
Mazimise Z = O(P - V) - HL

3.1 Introduction
N

St. E X < B The search method employed for arriving at the sub-
4=1 optimal decision variables is the Complex Method of

Xd >_ 0 and integer BOX [4], where the independent variables are the buffer
where: vales at the nodes and the objective function is the ear-

w :er mentioned objective function of the CND.

9 = Average thoughput of the topology The BOX method is a derivative-free sequential search
P = Average revenue/iem technique which conducts an iterative sarch for the op-

timum value for an objective function while there are

V = Average variable production cost linear or non-linear constraints on values of the indepen-
dent variables.

H = Average holding cost/item

L = Number of unit# at node i at steady state 3.2 starting Solution

L = Li/r = A verfe total number of units in the One of the features of the BOX method is that the user
production line at steady ste supplies a starting feasible point (buffer values) and this

starting solution sets the search pattern for rest of the
B = Total capacity allocated to the network iterations. Since the pattern of allocation of buffers in
X= Capacity faffer) allocated at each node the sub-optimal solution is highly dependent on the ar-

rival rate, service rates and atiuisation at the nodes and
C4 = Cost of e... iunfer allocated to node i in &h net- the total capacity allocated for the network, it is very

work important that the starting point supplied to the search

C = C4 , i = 1.N, Cost of each buffer in tMe net- method have the pattern of allocation of buffers similar
work, all Ce b equa. to that in the final sub-optimal solution.

It is very difficult for the user to supply the right
14 = service rate of node i starting point since not much is not known about the
A4 = arrival rat do queue i dynmamic behavior of the queues and no simple knap-rsack heuristic starting solution was found to be appro-

The CND problem mentioned above is a nonlinear priate. At this stage, the authors decided to use the
stochastic knapsack problem. One of the features of the procedure proposed in (9J to arrive at a refined final
CND problem which makes the problem very challeng- starting point for the constrained search method. This
ing to solve is that, no known dosed-form expression for procedure, using the previous bounding methods to ns-
estimating the throughputs in arbitrarily configured A- timate the throughput and the objective function of the
nite open queueing networks exists. This feature makes network and Powell's procedure (211 for solving uncon-
it very hard to control the design variables a a function strained nonlnear programming problems, calculates the
of the variation in the objective function. allocation of buffer at the nodes based on the arrival rate,

DocNum . 3. 3.0
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service rates of the nodes, routing of the enuties ano the 2.2 Obtain X1 i = i, ... N, the sub-opntal bufter
assumption that there is no constraint on the total ca- allocation at the noaes using the procedurmz •n
pacity of the network. [9] assuming infinite capacity for the network.

2.3 Obtain proportionate values X4 i = 1 ...... ".

S,.,.Ls oC.,.U-,.. , " at the nodes such that they meet the caD-i;C.

" .-qu......- I onstraint aet for the ne•wuork.

Let

.. .X* X"(i = ... N) = buffer&allocatedto the
Snodes in the oFtimat satio~n in aep 2•.2

B = total capacity for the networ*

s X i = 1, .... = starting solution for the
BOX search me•zhod

then
r X = X11X * (B/(M -3)) if N< 3

and x, = x," * B/(M - N)) ifN•> 3

I '•:."u•". i Stage 3.0 (Obtain a continuous sub-optimal solution)

L- ,Run the BOX search method to obtain the so.utwon

s , as , ,Stage 4.0 (Obtain an integer sub-optimal soiuttion) "'..eSI su-timal solution obtained in step 5 wil be, iuL
_ _ _ for an e:ception, a non-intger solution.

sup e _WW A;binations using he two integers closest to the

vl of buffers for each node.

S' LetX1 1 1 -e t h largest integetr ess thn nd

X13" be the lowest integer greater than X

S.S General Design Metodology So we have 2N combinations o, integer soiu.
totu.

The CND problem is solved in four stages. A flowchart 4.2 Of the above 2" combinations, only those whose

representation is given in figure 1. sum is less than or equal to B are selected.
Stage 1.0 (Init n) 1wThus Aere are N * (N + 1)/2 cc.rbMnations.

Obtain the objective function for eadA cf the
combinations. TVe objective function jor each1.1 Identifl the Graph G(V, A, r), arriva •/ combination is calculate using t.e ezpamnson

Al, j = 1,...,M, wher (M= number of combnti c

queues in a merging topology) , service rates

pi, i = 1,..., N, routing probabilities , j = Stage 4.3 The .ombination which returns the mnea-

1,...,K, (K = number of queues in a splitting imam value of the objective function as the sub.
topology) and the total capacity B in the net- optimal integer solution,

work .
The authors conducted approximately 200 experi-

1.2 Select the alues of, (, bet and 6. meats with various types of topologies and their corm-

1.3 Set the limit on the number of iterations for the binations and found the above described methodology
search me"hod, to work successfully each and every time. The results

of experiments conducted for series, splitting and merg-
Stage 2.0 (Iterain for the search pattern for BOX ing topologies are described and validated in the next

MetAW) section.

2.1 Select a starting point Xi i = 1...,N such 4 SUMMAzY Or RzSULTS

X' ý 0 and ' X' < B for the procedure in In this paper, a methodology was proposed for finding
step LA. the optimal buffer allocation in a constrained network

Doe.Nms . 4.0.0
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design problem. The results in the preceding sections [14] Jafari, M., and Shanthikumar, J., G., " Determina-
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Extended Abxtract

Interior point methods more or less close method of following the central path have been
succedully applied for the solution of large linear programs.

Generalizing the notion of the analytic center of a finite system of linear (convex, analytic)
inequalities - which proved to be of central importance for the theory of interior point methods
in linear (convex) programming - - we define an analytic center for convex sets K in R" defined
as feasible sets, corresponding to a smooth, p parameter family of convex, (e.g. quadratic,
or linear) inequalities 1 < p _5 n - 1 .Connections to the theory of (central solutions of) the
classical moment and related operator extension problems as well as to relevant notions of
atfine differential and integral geometry are briefly discussed.One of the most reassuring fact
is that the "maximum entropy" solutions, in the classical moment problems, see [1], can be
interpreted as a special application of the general principle, used by us to define a path of nice
feasible solutions leading to the set of the optimai ones, see below.

For the solution or semiinfinite linear programs (wich arise when the finite index set is
replaced with a continuum on wich one is interested to solve say an optimal approximation
problem or a moment problem the commonly used methods were based on (adaptive) dis-
cretization of A and solution of the arising finite but large linear programs. In this way the
smoothness, analiticity of the data functions (on A) has not been used i.e. exploited at all,
and the dimension grow drastically when accuracy requirements are increased. In [1], [2], [31
we outlined methods using analytic centers and central path for solving semiinfinite convex
programs.

In order to explain our approach we remind, that an optimization problem is easily reduced
to a one parameter family of feasibility problems. Therefore we think, that a basic problem of
numerical convex analysis is to find a nice solution concept for (important classes of) feasibility
problems with feasible sets, say of the following type:

pA := {x = L91f(a,t,Di•,p) _ O, c E A,e(#3,t,D 2t,p) = 0, 0 E B}, (1.1)

where L is a linear operator, t is the state of the underlying system, D, and D2 are linear,
constant differential operators (applicable to the functions t(.)), f(.) being concave quadratic
in (t,Dlt, e(.) being linear in (t,D 2t), p is a parameter, A and B are "index sets", the
elements of which have often the interpretation as points in space and (or) time. "Nice".
means, that this solution must be a low complexity function of the "data", i.e. the parameter
p defining the system (of inequalities and equalities), which can easy be updated, when this
system, i.e. its parameters are changed (usually by a one parameter homotopy). Section 2 is
devoted to such a concept of nice central solution.

The second point is here that reasonably (i.e. not too) complex feasibility problems are
those, in which the elementary inequalities and equalities are simple, i.e. the first given by the
positivity of a linear or quadratic function on the unknowns, while the equalities being linear
in z, moreover the dependence of an individual inequality (equality) on its defining parameter
is also "simple"; this will be qualified further below, e.g. in the case D, = D2 = 0 mainly
by requiring, that certain integrals of the arising, algebraically simple functions over the given
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sets, A, B can be easily computed by simple quadrature (i.e. "cubature",...) formulae (within
appropriate accuracy). By requiring (in fact often : "exploiting") this, we are able to avoid
the blowing up of the dimension of the linear or "quadratic" programming problems arising by
brute force discretization of the parameter space A). Similarly we have to assume, that the
"structure" of the equaiity constraints imposed on the unknowns is also "simple". We shall see,
that in this aoproach the basic problerns belong to the realm of classical analysis, algebraically
simple analytic functions and their integrals and approximations - say by rational functions,
or by other simple, constructive classes of rather smooth functions - playing an important
role: the effectivity of the proposed method depends on how quiddy we are able to follow,
i.e. continue by extrapoiating (i.e. predicting) the homotopy path of "nice", interior solutions
leading to an optimal solution.

It turns out, that the latter problem is closely connected to an other problem: how to find
"nice", relatively tight two sided ellipsoidal appro•imations (around the previously defined
"nice", central solutions) for the corresponding feasible sets, in fact nicety of these centres
should be defined as to include the existence of low complexity algorithms for constructing
and updating these ellipsoids. There are several reasons for imposing these requirements. First
of all: the existencc of such approximations turns out to be responsible for the effectivity of
the corrector phase - via Newton's method - of the (homotopy) path following, predictor-
corrector methodcsee 15].

2. Basic properties of analytic centers

The (analytic) center x(fp,') of the convex inequality system (1.1) - with a bounded
feasible set pA,B having a nonempty interior in R"- is defined as the (in general) unique
solution of the supremurn problem

sup $(x),'(x) = sup-{Jlogf(a,E,Djý,p)dace(3,t, D2D,p) = 0,x = LE,V/3 E B}, (2.1)
zEP•" 'a A

where dot is a measure, which is independent on t, but may depend on the set {fA}; we
assume here - just for simplicity - ,that da depends only on A. Notice, that (2.1) is a
classical Euler-Lagrange type variational problem, which in general has a unique solution,
depending analytically on the parameter p. In this section we discard the dependence of f
on the parameter p and first restrict the attention to the case, where B is the empty set. In
general, e.g. if A is a finite set and if all f(a, .) are linear, or if all f(a, .) are concave and
(at most) quadratic at least one being negative definite, the function

4(z) = f log f(a, z)da (2.2)

is strongly concave over pA. To assure the existence of the integrals in (2.1) and those
appearing later below it would be enough to assume that f(.,z) and its derivatives (up to
order two) are continous and uniformly (in x E pA) bounded over A. More important is that
in the proposed methodology (using analytic homotopies along centers) we need (at least we
should like to get) a high degree of smoothness and algebraic simplicity, therefore a nonsmooth
constraint of the type, say

maxgi(y)t) 1, g,(p):= I fq(y)I,i-= 1,...,n (2.3)
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will be replaced by a set of smooth contraints

t--i, < 1, - f,• <,(y)<_5 j, I <_j :5k, i = 1 .. ,n
j

i. e. we set x = (Y, ... r. ,y). For simplicity we shall assume first that in (2.1) f() -
f((a, x),e 0- 0, L = id, D1 - 0. The following invariance properties of this "solution"
concept are important:
(1) affine invariance: if we replace f(a,'-) by f(a,.),f(cr,y) := f(a, Ty + t), where t E

R", T : Rn -. Rn, det T# 0 then

t + Tx(fA) = x(fA) (2.4),

(2) invariance under scaling- if we replace f(a, .) by f(cr,.) := k(a)f (a, .), for an arbitrary
function k(a) then

X(PA) = X(fA) (2.5).

The proof of (1) is easy obtained from the characterization of the optimal solutions for
(2.1)

J vf(aX) 0 (2.6)
f (a, X)

A

The proof of (2) is immediate from the "additivity" of the log function.
A further, rather useful property of this solution concept is that it often allows to find

good ellipsoidal inner or (and) outder approximations for the set pA. The idea is simple:
consider the function

1A(x) := exp(O(x)) (2.7)

and the set -where H = D2 %A(z(fA)) is the Hessian of *A at X(fA) -

E(fA) := {z -XzHz < pA(z(fA))}. (2.8)

It is natural to expect that E = E(fA) is a good ellipsoidal approximation of pA (wich of

course, shares the invariance properties (1) and (2) of z(fA).

Theorem 1
Suppose that A is a finite set of cardinality m and that the functions f(o, .), a E A are

conmve and quadratic, then
X(fA) + 2• E(fA) <_ pA < Z(fA) + _ViE(fA) (2.9)

This is proved in (141. The suprising point is here the independence of the quality of this
approximation on the specific data, i. e. the form of the functions f., a E A.

An important property of the function * is that it is concave on pA ,if

A dot -
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a condition (normalization) which we shall assume below (obviously without loss of general-
ity).This can be proved by computing the Hessian of #

H= D 2 f(aX) _ a(a)a*())di +
"H L f(a), X)A IA

-where a(a) = Y-7tz using the inequality

da)2 La(ar)a(cr)'da > a(cr)dczj a(r)da)*,

which is obtained from the Cauchy-Schwartz inequality (multiplying-from both sides-with
a vector).

Many convex feasibility problems are written in "dual" form, known as a finite ,or re-
stricted moment problem: given cT = {c(t) I t E T}, the "set of feasible solutions" is formed
by the nonnegative mass distributions (densities over a set S

PK(cT) = {fA I c(t) = I K(t, s)d/i(s), t E T di >_ 0}. (2.10)

The central feasible solution is defined as that element (if it exists and is unique) which solves
the supremeum problem

sup{j log pt'(o)ds IIL E intPK(c(.))} (2.11)

here int stands (intuitively) for "interior of" and means (precisely) that only those mass
distributions are regarded which have a log integrable density.

If A is a finite set, A= {1,..m.lm} and f(ca, .) are linear in x, say,

f(a,z) =ba -a, ct--a=1....tm

then introducing
14i:=-bi-aTZ, i ml,...,

we can find vectors ki,... ,k.A,,_- E /' and scalars cl,..., c,._. such that

PK(cN) = {It j< kj, A >= Cj, IA E R+} (2.12)

is identical with the set of vektors {f m (x) I x E p(fA)} (note that I T 1= N = m -
n).Obviously f m(z(f A)) yields then the solution of problem (2.11).

A further strong motivation for the importance of the solution concept (2.11)-thus for
(2.1)-is that for some rather interesting special cases (of the kernel function K(-,-)), e. g. in
the class of the Nevanlina Pick type moment problems, the solution (2.11) - known as the
maximum entropy solution - can be exactly(!) computed in a very simple way in O(NM) (in
fact even inO(NlogN) operations and recursively in N). In fact this classical example is at
the root of recent more general results about the role (existence, applications) of central or
"maximum entropy" solutions to the basic H- optimization problems, see [11,[6] for further
references.
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An important application of centers is for solving optimization problems of the type

inf{fo(z) I x E pA} =: f; =? (2.13)

Using the observation that fo(x(A)) \ f* for A \ fo where z(A) is the center of the extended
system

sup{log(A - fo(x)) +/;logf(a,x)da Ix E pAA Ž fo()}, (2.14)

the idea is to follow the homotopy path z(.) from A0 to f• by a predictor-corrector method,
where in the corrector steps Newton's method is applied to the system

WO°(W) f +J (Gj) a = o, r> 0. (2.15)

Here we introduced a new parametrization of the central path by r - A - fo(z(A)) such that
r = 0 corresponds to the optimum.

3. Definition of an analytic center for convex sets defined as the intersections
of a k parameter family of halfapaces

Let K be a compact, convex set in 1", cgr(K) its center of gravity is the solution
i = X(K) of the following opyimization problem:

sup 1(4 0(x) := sup{f log i(z)dzl Jx zis(z)dz, JI(z)dz = 1,p > 0}, (3.1)
zE K

K K

where - for simplicity - it is assumed, that the sup is extended over all mass distributions,
which have a log-integrable density. In fact the solution of the inner optimization problem
iseasily obtained (notie, that (3.1) is a moment problem like (2.10)-(2.11)): for given x the
optimal density has the form u(z) = aEzi + ao)-, where the Lagrange multipliers
ti = ai(x), i = 1,... ,n are uniquely determined through the optimality (and positivity)

conditions (see below) - by the strong convexity of the problem -

4K(z) = Jlog(aT(x)z)dz, x = f Z((x)zridz, (3.2)

K K

where we used the notations z "-. (1,z ,... ,Izr), aoz - caixi + aO. Without loss
of generality and following our earlier normalization we can assume, that vol(K) = 1 and
cgr(K) = 0, this implies, that aG = 0, i = 1,...,n, a0 = 1 and $(0) = 1.

Pursuing the analogy with the construction (2.7)-(2.8) we are led to consider the ellipsoid
1

E:= {z= - - < D2 '(0)z, z >< 1}. (3.3)
2

This ellipsoid is the complete analogon of (2.8),there the total mass is m (the number of
summands in the analogon of the potential function (2.2)).

Theorem 2. For an arbitrary convex, compact domain K in R" the above ellipsoid -
centered at the orig'ne, the centre of gravity of K - provides an (optimal order) two aided
apprw~inmtion of K :

1-- i E C K _ constnE 
(3.4)v'_
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Proofee [3],where also the case of a oneparameter family of linear inequalities is dealt
with in more detail.

Now we look to the dual of the above approximation (construction).

Definition. Let P be a convex compact set, its analytic center, c(P) is defined as that
(uniquely determined) point, which becomes the center of gravity of the dual set Pa, when it
is taken as the center of duality:

C(P) = cgr(P)). (3.5)

(Here and below we indicate - by a lower index - the point, which is taken as the center of
duality, unless it is the origine.)

Lemma. The above point c(P) is uniquelly determined, since it is the solution of a
(strongly) convex minimization problem: it minimizes the volumen of the dual set P•'

arg inf (3.6)J P) -

Proof. Noting that P d = ({lm(O,P) - 'Tx < 1}, where M(O,P) = sup{OTXlx E P}, the
validity of the second formula being immediate differenciating with respect to x we get the
condition

0 = (m(4,const 00r , (3.7)
1 Mop) - O~TX)n+1 - j

110==II P.

i.e. that x is the center of gravity of P.'. The unicity of the fixpoint of (3.5) follows from
the strong convexity of the function f(m(O, P) - OTx)-1dO in x over P, note that instead
of the Lebesque measure we could take here any measure do., which has at least n positive
weights in linearly independent "points" 0. We were led to the point (3.5) by analogy with
(2.1l)-(2.12), having in mind this, latter case (of a discrete measure), where the potential
function is proportional to the volume of an ellipsoid containing the dual polyhedron, see the
references to earlier papers of the author in [21 and below. If we describe the set P by its dual
with respect to the point c(P)

P = {zIm(O,P) >_ OT# , VY E 11,)), (3.8)

then c(P) yields the maximum of the potential function:

4(Z) = J log(m(.0, P) -#x)dO;

in fact the above lemma shows, that c(P) is the unique fixed point of the map x -- z(x)

z(x) = argmax4,(z), 4f(z) -i Jlog(m(Q,P) - OT z)d#

P.,

indeed the equations

0 U
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are equivalent (by the zero, reap. first order) "homogenity" of the integrands). Moreover
the second derivative of this "optimal" potential function, which is expected to yield the
ellipsoidal approximation for this inequality system according to the construction (2,7)-(2.8),
is just the matrix M, i.e. the inverse of the simila (but dual) one associated to c(P) as to a
center of gravity. This observation (showing the primal-dual coherence of our constructions)
is a generaiaon of an analogous connection observed earlier for finite systems of linear or
convex (quadratic) inequalities.

D 24'(X) = [D2tP'(X)Pi for x = c(P) = cgr(P3)

In the latter (finite) case the connection (equality) between the volume of an ellipsoid E'
containing the dual polyhedron Kd and the value of the potential function O(x) has been
known earlier.

3.On the chosen implementation

Here we present experiences with a class of methods, whose distinctive features of imple-
mentation can be summarized as follows

1.)Path following using the differential equation of the central and parallel paths (partic-
ularly its simplest first order implementation: the affine scaling direction)

2.) Exploiting the analyticity of the elementary bounds and their dependence on the
serminfinite parameter a by using high order quadrature (and path extrapolation).

3.) Dynamic, adaptiv selection of the approximate finite set of nodes to be used for
checking feasibility of the extrapolated points, this is used for the selecting the stepsizes.
These nodes are provided by the use of adaptive quadrature algoritms, see e.g. (51, to select
(i.e. concentrate asymptotically) the integration nodes in the subdomain, where the constraints
are "active".

4.) Regulation of the step size either with adopting a continuous recentering strategy or
(in the first order case) by advancing with a constant portion of the distance to the boundary
(along the extrapolation line).

It should be noted, that for seminfinite problems especially over a higher dimensional set
A, the computation of

max f(a, x) = d(z)
xEA

which would be needed for an exact "estimation" of the "feasibility" (distance to the boundary)
and which - by the way - is also needed to accomplish a usual pivot step in the simplex
method may be rather difficult.

Since in a this function may be neither concave nor convex, the computation of the
above value d(x) is to be avoided. We can solve circumrent this problem in two ways; either
by adopting a close following of the central path, measuring the "distance" from it by a
specific quantity (which comes out from the well known analysis of the convergence domain of
Newton's method for computing the centers) for monitoring the stepsize selections, or we can
use an adaptive discretization of the set A, which is automatically generated by the adaptive
quadrature method (by adding all the dyadic in A = [a, b] nodes, which have been generated
for the various components of the functions to be integrated. We did not try to implement a
primal-dual procedure, since the dual variable here is a function.

In the linear case, when f(a, x) = b(a) - aT(a)x we have the dual problem

max{-IbT(a)d1,(cr) c, = fat(a)d/p(c), i= 1,...,n, di(.) >_0}
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known as a moment problem, and along the central path z = x(r), r > 0 we generate feasible
solutions pu(.) of the form

dpot r &
b( To)

which aproach b-type (atomic) measures, as we approach to a (nondegenerate) optimum. The
nodes generated by the adaptive 4uadrature method will be concentrate more and more around
these points.

The problem of the optimal selection of the underlying measure da A will be discussed
in connection to affine imvariance. We shall present test results also for the case when all
constraints f((a, x) are quadratic in x (arising from optional control problems with "pointwise"
state and control bounds). In the MATLAB code we tried to use as much parallelity as possible
(in evaluating the functions, integrals, directions as vectors over the current index set, the
adaptive quadrature algorithm is hard to be integrated in such a "parallel" enviroment, and
for moderate accuracy requirements can be replaced by a fixed composite Gaussian quadrature.
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Abstract

A probabilistic network is a network in which the vertices are assumed to be perfectly reliable and

the edges have independent operational probabilities. The k-terminal reliability of a probabilistic

network is the probability that all nodes are connected in a selected set of k nodes. We investigate

the effectiveness of bounding all- and two- terminal reliability using surface dualization techniques.

Dualization heuristics are discussed, and some computational results are given.

1 Introduction

A network is a probabilistic graph. In our network model all the nodes are perfect (i.e. have
operational probability 1) while all edges have a fixed operation probability in the range [0, 1].

We assume that the operational state of each edge is independent of the operational states
of all other edges. A subset of two or more nodes is selected to be the terminal set of the
network. It is the connectedness of these terminals that reliability measures.

All-terminal reliability is the probability that the network is connected at any instant of
time. Two-terminal reliability is the probability that two terminal nodes s and t are always

connected. Computing all- or two- terminal reliability is #P-complete even for planar graphs
[18]. Thus many polynomial time approximation techniques have been developed. These
techniques can be divided into two categories: Monte Carlo methods and bounding methods.

Monte Carlo methods result in an approximation with confidence intervals while bounding
methods produce an absolute lower or upper bound.
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Bounding methods are of two main types: iterative methods and static methods. Static

methods produce a single bounding value, with no obvious way of improving the produced
bound. Iterative methods, however, allow for incremental improvement of produced bounds.
An important class of iterative methods are those that generate the most probable network
states. It has been shown that static methods based on subgraph extraction and network
transformation can greatly increase the efficiency of both Monte Carlo and most probable

states methods [7, 9]. Hence improvements on static methods are desirable, both to obtain

better bounds and to accelerate iterative techniques.
There are several existing all- and two-terminal static lower bounds. For all-terminal

bounds of networks with equal edge probabilities there are Kruskal-Katona 1141 and Ball-
Provan (2]. Existing two-terminal static lower bounds include Kruskal-Katona (14], Chari-
Provan (4], and Series-Parallel [1]. Kruskal-Katona, Ball-Provan and Chari-Provan can only
be applied to networks in which all the edge probabilities are equal. Computational results
support the observation that existing upper bounds are tighter than existing lower bounds.
Hence better lower bounds are very desirable.

For planar graphs there is a one-to-one mapping between cutsets of a graph (primal) and
the cyclic subgraphs of its dual (19]. This translates to a linear relationship between two-
terminal reliability of a graph and the two-terminal reliability of its a - t dual [221. Our
strategy is to generalize these equalities that hold for planar graphs to inequalities which hold
for non-planar graphs and their surface duals.

2 Definitions

A k-terminal network G = (V, E,p, T) consists of a set of nodes V, a set of undirected edges
E, a set of edge operational probabilities p, and a set of k terminals T. A two-terminal
network has two terminals s and t. For all-terminal networks we typically omit the terminal
set specification. We refer to G = (V, E) as the underlying graph of the network. The value
pi,. E p represents the probability that edge {i,j} is operational at any instant of time. It
is assumed that the edge operational probabilities are independent. Then qij = 1 - pij
represents the probability that edge {i,j} is non-operational at any instant of time, and
S= {q.j - {i,j} E E}. We assume that the network is simple and 2-edge connected, since
reliability of a 1-edge connected multigraph can be linearly reduced to the calculation of the
reliability of at most n simple 2-connected subgraphs. In this paper the number of nodes in
a network is denoted by n and the number of edges by m.

In a directed k-terminal network d = (V,E,p,T), E contains directed edges (arcs). For
directed networks one terminal is denoted as the source . while all remaining terminals are
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destination terminals. A directed all-terminal network is specified as C = (V, E,p, (s)) and a
directed two-terminal network as d = (V, E,p, (s, t)).

A paihset is a subgraph which connects all terminals (or in a directed network, connects the
source to all destination terminals). A minimal pathset is a pathset which does not properly
contain any other pathset. Hence an s - t minimal pathset is a path from s to t and an
all-terminal minimal pathset is a spanning tree. A cutsei is a subset of edges that separates
one or more terminals from each other (or in the case of a directed network, separates the
source terminal from at least one of the destination terminals). A minimal cutset does not
properly contain another cutset.

The sets of all pathsets, cutsets and complements of pathsets of size i are denoted by vi,
Ki and Xi respectively, with v = Uvi, r. = UOi and X = UXi. The numbers of pathsets, cutsets,
and complements of pathsets containing i edges are denoted by Ni, Ci, and F, respectively.
It is easily verified that:

N•= m -C,•-,

N= F,.(, -

i -Ci

If all of the edge probabilities in the network are equal to p, then Rel[G] can be expressed
in terms of the Ni's, Ci's or Fi's as follows:

Rel[G] = Nip'q'-' Fjp`-'q' = 1 - > Ciq'p"-
i=0 i=0 i=0

Sometimes to emphasize the fact that we are interested in all- or two-terminal reliability we
use RelA[G] and Rel2 f•] in place of Rel[GI.

The following topological definitions are needed (see Gross and Tucker [10]).
An imbedding of a network on a surface S is the drawing of the network on the surface such

that no edges of the network cross. A 2-cell imbedding is an imbedding in which all the regions
are open disks or cells. All imbeddings in this paper are assumed to be 2-cell imbeddings. An
orientable 2-cell imbedding is a 2-cell imbedding on an orientable surface. Spheres and planes
(which are just spheres with a point removed) are orientable surfaces of genus 0. For i > 1, an
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......... Face Boundary0 .............. 0
Straight Edge Twisted Edge

Figure 1: Face-Tracing Along Straight and Twisted Edges

orientable surface of genus i can be represented by a string of i adjacent tori, or equivalently
as a sphere with i loops called handles added to it. A nonorientable 2-cell imbedding is a

2-cell imbedding on a nonorientable surface. Spheres, even though they are orientable, are
also taken to be nonorientable surfaces of crosscap 0. For i > 1, a nonorientable surface of

crosscap i can be represented by a sphere with i holes, each hole closed by attaching to it a
Mobius band (created by taking a strip, twisting it once, and attaching its ends together) at its
boundary. Orientable imbeddings contain only straight edges while nonorientable imbeddings
contain both straight and twisted edges. (See Figure 1 ).

Both nonorientable and orientable imbeddings can be locally oriented in that a clockwise

or counterclockwise direction can be associated with each node of the graph. Straight edges

having like oriented endpoints and twisted edges having opposing oriented endpoints are type-V
edges. Similarly, straight edges having opposing oriented endpoints and twisted edges having

like oriented endpoints are type-I edges. In this paper we will assume that every vertex is

locally oriented in a counterclockwise direction in all imbeddings. Thus straight edges will

always be type-0 and twisted edges will always be type-1.
A surface (topological) dual G' of a graph G with respect to an imbedding I is defined in

the same way as a planar dual. Each region of I is a vertex in GD and edge e of the graph is

added between nodes i and j in GD if e is common to the boundaries of regions i and j in G.
The surface dual of an all-terminal network is the surface dual of its underlying graph with

edge operational probabilities of the dual is T.

A generalization of an . - t dual [22] GD, can be defined for any 2-connected simple two-
terminal network G = (VE,p,{s,t}) as follows. Find some circuit containing both J and
t, C = (S,v 2 ,v,,.. .vi_ 1 ,t,vi+1 .. .vk) (such a circuit must exist since G is 2-connected). Add

edge e., = {s,tl to G. Adding et to C creates two circuits C1 = (s,v 2,vs,. .. ,vi,-,t) and

C2 = (tiv+i,... Vi, J). One can then find an imbedding for the underlying graph of network

G U e, such that these two cycles form region boundaries [23]. The edge probabilities in G1.
are T and the terminals a' and t' of G', are the dual nodes corresponding to the regions whose
boundaries are C, and C2 respectively. Thus GY. = (VD, ED, -, {s', t'}).

For a directed network G we assign directions to the dual arcs as follows: if arc e is directed
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clockwise around region R1 and thus counterclockwise around region R2 then in the dual arc

eD is directed from node R1 to node R2. Furthermore for all arcs eD = (i,j) E ED,i $j, add

arc e'D = (j, i) to ED with p., = 1.

If d is a two-terminal directed network, we direct eat from a to t and ensure that et is

directed counterclockwise around C1 and clockwise around C2. We also delete all arcs directed

into a' and all arcs out of t'. The a - t dual of a directed network d with respect to some I,

imbedding is denoted G, - (VD, ED+,5+, (s',t')).

One algebraic method of representing a 2-cell imbedding is a rotation system. Given a

2-cell imbedding I, the rotation system representing I consists of a rotational vector ri for

each vertex i. Each r" contains entries for edges incident to vertex i in the order they are

encountered when making a circulation around i consistent with its local orientation (which in

this paper is always counterclockwise). If an edge is of type-1 we add a superscript 1 to it when

including it in the rotation system. There is a 1-1 mapping between rotation systems and

locally oriented graph imbeddings (up to equivalence of imbeddings). It is a very simple matter

to determine the faces of an imbedding and thus its associated dual from its rotation system

representation. Finally a rotation system containing only type-0 edges is called pure. There

is a 1-1 correspondence (up to equivalency of imbeddings) between orientable imbeddings and

pure rotation systems. For more details see [10].

3 Bounds via Duality

This first proposition is due to Richter and Shank [19]:

Proposition 1 Let G = (V, E) be a simple undirected graph and let I denote any imbedding

of G on some surface S. Let G' = (R, E) be the dual of G with respect to I. Let C be a

minimal cut of G and CD its corresponding subgraph in GD.

Then the degree of every vertex in C0 is even, i.e. C contains an even number of boundary

edges from every region in G.

Define a cycle as a loop or closed path and a circuit to be a connected set of one or more
edge disjoint cycles.

Corollary 3.1 CD can be expressed as a set of circuits.

This follows from the fact that all vertices in CD have even degree. Thus the number of cyclic
subgraphs of size i in GC is an upper bound for the number of cutsets of size i in G.

Let Sp,(G) indicating the number of spanning forests on i edges of G.
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Corollary 3.2 For an all-terminal undirected network G, Fj >_ Sp,(GD).

This follows from the fact that all network cutsets of size i map to cyclic subgraphs of size i
in the dual.

The corollary indicates that for all-terminal networks with equal edge operational proba-
bilities it may be possible to improve the lower bound on some of the F1's. An algorithm of
Liu and Chow [15] can be used to compute the number of k component spanning forests in
time polynomial in m but exponential in k. Therefore if there are nd vertices in the topolog-
ical dual, we can efficiently compute lower bounds for F,,•-, ..., F,,-k where k is some small
integer constant. If any of these are greater than the lower bounds produced by conventional
Kruskal-Katona methods, they can be used instead to produce a better lower bound. Similarly,
if any of these F, lower bounds are better than the lower bounds produced by the Ball-Provan
bounds, we can determine a better Ball-Provan lower bound using the improved Fi lower
bounds (See Section 4). For more information about the Kruskal-Katona and Ball-Provan
techniques see 151.

We now turn our attention to two-terminal networks.

Proposition 2 An s - t cut C in an s - t network G = (V,E,p,{s,t}) U e., is a cyclic
subgraph CD in any s - t dual G D, = (VD, E D,-T, {s',t'}) of G. Furthermore a' and t' both lie
on some common circuit of CD.

Corollary 3.3 CD is an a' - t' pathset in GD, _ e.

By the above proposition any a - t cut C in G U est forms a cyclic subgraph 0D in G.,
where s' and t' are contained on some circuit. C = C - et is a cut in G and CD is a subgraph
of GID, - eD in which a' and t' are connected.

From this point on, GC, refers to the topological s - t dual with edge e' removed.

Corollary 3.4 Let G = (V, E,p, {s,t}) be a two-terminal network and let

,= (VD,E ,{a',t'})

be any s - t dual of G. Then Rel2 [G] 1 1 - Rel2[G,].

Let C = {C 1,...,Ck} be the set of s - t cutsets of G and P = {PI,P2,...,P,} be the
set of s' - t' pathsets of GD,. By corollary 1, C C P. Thus q[1 .= [ 'I • c q , -< E ,= l I ] , P . q t S o

EI=- [L-,, q. - I - fl~ [, q. since the sums are between 0 and 1.

Thus Rel[GC] 1 1-Rel2[Gf,,]. This implies that a lower bound for RelC[GI can be obtained
from an upper bound for Rel2[Gf,].
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Proposition 3 Let d = (V, E,p, (s, t)) be a directed 2-terminal network and

D,= (VD, ED+,+,(u,t1))

any directed s - t topological dual of 1. Then the Rel2[G] > 1 - Re12 [GD].

4 All-terminal Implementation

A major stumbling block in implementing this bounding technique is to find an imbedding

that produces a large number of spanning forests in the dual. Here we examine the suitability

of this method using orientable imbeddings. We first attempt to sample a small percentage of
pure rotation systems randomly and select the one producing the dual with the most spanning
trees. The higher the genus of the imbedding, the higher the hkelihood of a reduction in unique
spanning forests due to loops and multiple edges. Unfortunately, the number ot high genus
imbeddings in our test cases far exceeds the number of l~w genus imbeddings. Thus, randcm
sampling does not appear to be very productive. Consequently, we develop a heuri-tic which

attempts to construct low genus imbeddings (imbeddings with lots of regious) by ensuring

that a maximal set of cycles become faces in the imbedding. The heunstic is as follows:

Let G = (V,E,p). Given a subgraph S, let edges(S) denote the set of edges in S

1. Find a minimal cycle C6 in G. Set E,, = edges C1 ). Set E. = E - E,. Set ( = (C1}.

2. For each e = (vi, v2) E E. find if possible a shortest path P from vi to v2 in E.. If such

a path is found, set E. = E. - edges(P), E, = E& + edges(P), and 0 = 0 U {P + e}.

In any case, set E, =E, - {e}. Repeat this step until either E, = 0 or E. = 0.

3. If E& = 0 but E. $ 0 then find a cycle C in Eo. If such a cycle is found then set
E. = E, - edges(C), E. = edgea(C), 0 = E U {C} and repeat step 2.

4. Find a rotation system for the subgraph S = (V, E.) that ensures the circuits in 0 form
face boundaries. This is always possible because U1<c,<51e1C, defines a planar imbedding.

5. If E. # 0 then add the remaining edges in E. at the end of their respective incident

vertices' rotation vectors.

The cycles found in step 2 become faces in the imbedding defined by the rotation system

constructed above. Thus, if k cycles are found by the above algorithm, we are assured of at

least k + 1 faces in the produced imbedding. In the final paper, we present .:omputational

results using this heuristic.
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5 Two-terminal Implementation

Dualization results for two-terminal reliability lower bounds appear to be much better than
those for all-terminal reliability. For two-terminal reliability, we have a direct correlation

between the reliability of the dual and the reliability of the network. Here we examine a

heuristic which generates an orientable imbedding.
Once again the major difficulty in implementing this bounding technique is to select a

suitable a - t imbedding. As in the all-terminal case, we wish to minimize the genus of our
produced imbedding. However, minimizing the genus is not sufficient to ensure that a good
imbedding is produced. The longer the minimum a' - t' path in the dual, the better the

produced bounds. We therefore employ the following modified version of the all-terminal
imbedding heuristic.

Let G = (V, E, p, {s, t}). Given a subgraph S, let edges(S) denote the set of edges in S.

1. Find the shortest a - t circuit C in G (for example, via a mincost flow algorithm), and
add edge e., = (s,t) to C to get the two circuits C1 and C2. C, and C2 become a' and t'
in G.,. Set E = edges(C,) U edges(C2 ). Set E. = E - E, - {I e}. Set e =- {c 1,C2}.

2. For each e = (vI, v2 ) E Eý find if possible a shortest path P from v, to v2 in E.. If such

a path is found, set E. = E, - edgei(P), E,, = E,, + edges(P), and 0 = E U {P + e}.

In any case, set E. =E, - {e}. Repeat this step until either E& = 0 or E. = @.

3. If E. = 0 but E. $ 0 then find a cycle C in E.. If such a cycle is found then set
E. = E. - edges(C), E, = edges(C), e = 1 U {C} and repeat step 2.

4. Find a rotation system for the subgraph S = (V, E,) that ensures the circuits in e form
face boundaries. This is always possible because U<c,,<1 e1 Ci defines a planar imbedding.

5. If E. 6 0 then add the remaining edges in E. at the end of their respective incident
vertices' rotation vectors.

This heuristic for imbedding gives an efficient implementation of the bound in proposition

3. In the final paper, we explore the accuracy of the resulting bound compared to currently

available methods.

6 Conclusions

Surface dualization techniques deliver bounds that are competitive with the current best

methods. Furthermore, they can be utilized for state space reduction in Monte Carlo and
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Most Probable State methods. In the final paper, these applications are discussed further.
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In this paper we discuss a location-distribution problem and

its implementation for a beer brewer company. The

company has three beer breweries, two malt factories, three

product types and about 270 customer zones. We consider 15

candidate locations for the new breweries to be established in

the near future. We study the current distribution plan and

evaluate the alternative locations for the new breweries.

We develop two models to solve the problem. In both

models we aggregate different types of beer into a single type

as the transportation cost differences between different types

are small. This aggregation reduces the problem size and it

makes it easier to manage on PC's. We also excluded the

fixed cost of construction from the models as this cost did not

vary much among alternative locations.



560

The first model is a mixed integer programming model that

considers the transportation costs of malt to the breweries

and beer to the demand points. The model solves for the

distribution plan of malt and beer, and the locations of new

breweries. In the second model, in addition to the above, we

incorporated inventory carrying. The seasonality of demand

is an important issue in beer consumption and this brings

serious implications on the amount of inventory carried.

The effect of high inflation rate in the economy also

magnifies the importance of carrying inventories. In this

case the model becomes a multi-period model where months

represent periods.

The application of the models is done in four modules: the

data manipulation module in Lotus 123, the model

generation module in Fortran, the solution in LINDO, and

the reporting module in Fortran. The program is designed

so that different applications of models, such as clustering of

the customer zones, varying the number of product types,

and including the fixed costs of new establishments are

possible.

A series of runs for both models is executed on an IBM 486

compatible computer. Each run takes several minutes. Since

the estimation of the true inventory holding cost is not

straightforward, we represent the trade-off between

transportation and inventory expenses by restricting the

amount of budget tied up in inventory. We solve the
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problem a number of times by setting this budget to different

levels and plot the transportation cost vs. inventory budget

which is a compatible basis for comparing the two cost items.

We present the results of our study and discuss the

implementation under several scenarios. The results

obtained by the model have been found useful by the

management and they decided to locate their plant at the

location suggested by our study.

Keywords: Location, distribution
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ABSTRACT

Forward discrete dynamic programming was used to

optimise the pollution abatement effort along a river basin,

through the adequate location and operation of treatment

plants, at minimum cost. Upper and lower bounds were set in

terms of efficiency of pollution removal, which is the

'semi-independent' variable, in order to bound the solution

in a small neighbourhood. The efficiencies had to be

adequately translated into the independent variable, the

river water quality standard (measured in mg/l of BOD,

Biochemical Oxygen Demand), since it determines whether the

value obtained is a feasible solution or not.

Keywords: dynamic programming, global optimisation,

interval approach.
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1. INTRODUCTION

This paper presents part of a major research undertook

in order to develop a computerized framework to assist in

the management of a river basin industrial wastewater

system. It is applicable to rivers following a Dobbins type

model and the quality parameters under surveillance are the

Biochemical Oxygen Demand (BOD) and the Dissolved Oxygen

(DO). WODA commercial package was used and adapted for the

attainment of 4 BOD and 1 DO standards, using dynamic

programming, the subject of this paper. Geometric

programming was used to select the minimum cost preliminary

treatment plants' design. Other pollution abatement measures

considered are flow augmentation and artificial aeration. A

'compromised' minimum cost solution between a completely

centralised allocation of pollution abatement effort and a

single company most economical solution is determined. The

number of concentrated effluent discharge points (n)

determine the number of stages or reaches being analysed

(n'l), one at a time.

The objective function to be minimised is the cost of

t1e pollution abatement measures. which is a sunt of a

uaximum of three terms, depending on the number of different

types of measures being considered (treatment plants,

artificial aeration, and low flow augmentation). Four BOD

standards, 8.0, 6.5, 5.0, 3.5 mg/l, and one DO standard 5.0

mg/l, were tested. These include, as middle and lower

values, the EEC standards. The optimisation problem was

solved using a forward dynamic programming procedure which
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evaluated the minimum cost abatement efficiency.

2. OPTINISATION PROCEDURE

2.1. Preliminary Approaches

The simulation routine would run for the initial

conditions of the data to check if any violation of each

standard occurs. When it happens, the concentration of BOD

in the concentrated discharge immeadiatelv upstream is

reduced. The first reduction is 35% for technological

reasons, and after that the reduction is done in steps of

5%, until no violation occurs. If the violation is mainly of

the DO standard, then artificial aeration can be tested. If

the improvement is not enough, or if the violation is not

only on the DO level, then flow augmentation can be studied

to couple with treatment.

The cost of complying with each standard in each reach

is calculated and a variable, ROOT, dependinq on the reach

and on the standard is stored representing the pathway

taken. Indeed such a variable characterises a node in the

dynamic programming algorithm being implemented. It was

called NODE. The position and the value of the node's digits

give information about the reach number and the standard

being attained, respectively. The node structure is:

Node digits position Ist 2nd 3rd 4th ...

Reach number: 1 2 3 4 ...

Node digits value 1 2 3 4

Standard codes: 8.0 6.5 5.0 3.5

Two procedures were developed for the analysis of the
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reaches. One of them is based on the assumption that any

standard can be achieved in any reach, independently of the

standard achieved in the previous reach or reaches (case A).

The other procedure (case B) presupposes that it is

reasonable to assume that any reach downstream will not be

required to comply with a tighter standard than reaches

upstream. In other words, this case evaluates the minimum

cost of achieving at least a certain quality level in all

reaches upstream. Results obtained in both cases with test

data will follow.
(1)

Case A. The following final results were obtained:

RESULTS AFTER REACH 5 (last reach)
BOD Efficiency of BOD removal
Stand. (reach i, i=l,reach) Node Cost
(mg/i) (%) (US$ 1000)

8.00 0 75 0 ; 0 0 23211 416.27
6.50 0 75 ; 0 0 0 23212 416.27
" 0 ; 75 ; 0 ; 75 ; 0 23233 832.53

3.50 impossible xzty 4 -
i

Analysing this final result we can say that only two

standards, BOD<8.0 and 6.5 mg/l are being achieved

everywhere, which is far from the objective of the

simulation. This network corresponds to the most common

dx'namic pr'ogramming structure

Reaches 1234

Standards
8.00

6.50o

5.00

3.50

(1) All the costs are reported at 1969 values, and the total
number of reaches tested was 5.



566

Another constraint should be tested and carried out at

every stage of the dynamic programming procedure - the cost

of attaining at least every standard in all reaches

upstream, which was-the single objective of case B.

Case B. The following final results were obtained:

RESULTS AFTER REACH 5 (last reach)
BOD Efficiency of BOD removal
Stand. (reach i, i=lreach) Node Cost
(mg/l) (%) (USS 1000)

8.00 35 0 0 ; 35 0 31111 536.43
6.50 0 40 40 ; 35 0 22222 824.76
5.00 45 ; 70 35 ; 45 ; 0 44333 1230.27
3.50 impossible xztv 4 -

i

By considering, for instance the node 44333 we can see

that the minimum cost of complying with, at least standard

5.00, (number 3, in the node) was obtained when in reaches 1

and 2 a tighter standard (3.5 - number 4, in the node) was

obeyed. So, in spite of treating more than necessary, a

smaller overall cost was obtained. Or, in other words, the

more than necessary pollution reduction in z certain reach

can result in an overall reduction in cost by avoiding the

need of action(s) downstream. This network corresponds to

Zhe simplified dynamic programming structure

1 2 3 4
Reaches

Standards
8.00

6.50

5.00

3.50

Conclusion: the constrained solution, case B, has the

advantage of allowing us to specify, at any stage, the
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minimum level of BOD attained in any point upstream. This

is, in fact, the last standard to be checked, assuming that

the optimisation procedure starts with the less tight

standard. Case A, was discarded, provided adequate

constraints were added to the formulation of Case B.

We notice that standard 3.5 has not been achieved in

every reach, the solution obtained presenting it as

impossible to attain. This fact would oblige us to study the

use of flow-augmentation to couple with treatment, from the

reach onwards where treatment alone became insufficient. The

overall cost would certainly rise very substantially.

2.2. Charging Schemes

Several methods, without using any optimisation

algorithm were tried, in order to compare different charging

schemes for the usual four BOD standards being considered.

These were a minimum treatment method, minimum treatment

method but enforcing primary treatment in every reach, and

a constant removal method.

The results obtained are sumarised below, in Table I..

As we can see the closest method to the minimum cost is the

lini,,um Treatment Method.

2.3. Refined Approach

In fact, the Equal Treatment Method can be considered an

upper limit for the minimum cost solution, as far as cost

itself is concerned. The same does not apply to removal

efficiencies, which have been the 'semi-independent'

variables in the optimisation procedure above. The really
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independent variables are the standards. When comparing the

performance of the different charging schemes it was noticed

that standard 3.5 can be achieved by treatment only,

requiring an average removal rate of 75%. This fact proved

that the above optimisation was wrong and needed to be

altered. Consequently, the optimisation procedure was re-

studied. The problems involved with discrete dynamic

programming of this type, are very closely related to the

combinatorial aspect of the resulting steps. In order to

reduce them it is advisable to use upper and lower limits, if

known, to bound the solution in a small neighbourhood.

Table I. - Evaluation of Different Charging methods
Mjnimum Stand. attain. each reach Cost

M1ETHOD Stand. Removal 1 2 3 .1 5 Total M NC sol
Tested Ettic. 1 2 3 1 2 3 4 1 2 3 .1 1 2 1 1 2 1 4 10-,6

1(0.0) N x 536.42 300
Minimum 2(6.5) x x x N 836.13 100
Treatm. 3(5.0) N x N N 1291.77 123

4(3.5) N N - _ -

Ninirnum 1 N N N N X 1341.07 250
Primary 2 X N N x x N 341.07 163
Treatm. 3 N x N x 1559.98 148

4 N N - - _

1 35 X x N N N 1311.07 250
1qual 2 35 N x x N N 1341.07 163

7reatm. 3 50 N x x x 1478.69 141
•4 70 x N N N N 1799.33 117

1 x N \ X 5SG.42
'!ni•,i;m 2 N N N N N 836.13
Cost 3 N N N N x 1051.56

-1 x N x x 1532.96

As we have seen, the Equal Treatment Method would be a good

upper limit if the cost was the independent variable. Using

the simulation routine we can change the efficiency of

removal values, by a predefined 5% value, which, in turn,
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defines the discrete grade used.

We should be looking for an upper bound on the

efficiency, since we know that treating more than necessary

upstream may result in lower overall costs. If we knew that

the optimum would be, say, limited by 85% efficiency of

removal, then, for reach 1 we could start analysing the

minimum efficiency needed to comply with the standard in

that reach. All other upper efficiencies up to 85% would be

possible, at a higher cost. When proceeding to reach 2 the

same analysis would be done, for each of the possible

outcomes from reach I. The minimum cost solution would be

selected, after ensuring that it could lead to a feasible

solution, by which we mean a node which can lead to the

achievment of the standard until the mouth of the river.

Lacking real data for the desired upper lijit. we used

the maximum possible efficiency of 99%, and two lower

efficiencies, in order to split the possible space, and

reduce iterations for some of the standards. One of the

efficiencies was 95%, since it is the limit for secondary

treatment, and the other was 75%, for no other reason than

being the average value obtained by the Equal Treatment

Mlethod.

An important correspondance still to be established was

the need to translate the efficiencies into standards, since

these determine whether the value obtained is a solution or

not. The main program was altered to allow for three

introductory runs of the simulation routine for a constant

removal rate 75%, 95% and 99%, for each of the concentrated



570

discharge BOD concentrations. The maximum BOD value obtained

in each run is automatically selected and stored as a

'slack' or 'dummy' standard. Thus, the attainment of

standard 8.0, for instance, will now have 6 'ceilings' to

test in every reach. The complete diagram is shown below.

Reach Number

2 3 4 5Std.

3.50

5.00

6.50

&00 ____

The optimisation proceeds by checking every solution

for feasibility, by replacing downstream BOD concentrated

effluent values for the minimum possible (99% reduction) and

running the simulation routine. Only if the intermediate

solution being determined passes this test, will it be

ttcre1. A nwe routine was written for this purpose. If no

solution, for a certain standard, is achieved, then

treatment is not enough and has to be coupled with flow

augmentation. The final results obtained are shown below:

The cost and efficiency values are not completely

equivalent with those found previously, also due to a slight

difference in the value of the quality parameters.
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Corrective action was taken, mainly by rewriting the proper

software routines.

RESULTS AFTER REACH 5
BOD Efficiency of DOD removal
Stand. (reach i, i=I,reach) Node Cost
(mg/l) (%) (USS 1000)

8.00 35 ; 0 ; 0 ;35 ; 0 31111 536.42
6.50 45 ;40 ; 0 ;35 ; 0 43222 836.13
5.00 75 ;55 0 ;55 ; 0 54333 i,051.5b
3.50 75 ;75 ;55 ;70 ; 0 55444 1,532.96

3. CONCLUSIONS

Since the research was conducted on Portuguese data,

the optimisation procedure based on several standards was

devised in order to give decision-makers comparative costs.

This would allow them to select the proper choice, f r

instance during the legal adaptation period to r'EC

legislation, of a slackened standard having less drastic

effects in an already weakened economy.

It is known that the optimum can be inipro\ ed bv

refining the grade. However, by using the simulation routine

which increases the computing time considerably tor any new

standard tested, as well as the use of the available cost

funct ions and preliminarv treatn,@nt pl ant !]s i qs. s is

thought that a sufficient degree ot accuri.c is achie\ed.
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Abstract

This paper presents a review of the current literature on the branch
of multi-criteria decision modelling known as Goal Programming (GP).
The result of our indepth investigations of the two main GP methods,
lexicographic and weighted GP together with their distinct application
areas is reported.

Some guidelines to the scope of GP as an application tool are given
and methods of determining which problem areas are best suited to the
different GP approaches are stated. The correlation between the method
of assigning weights and priorities and the standard of the results is also
ascertained.

Key Words: Goal Programming, Lexicographic, Weighted

1 Introduction

Goal Programming is a branch of multi-criteria decision analysis. It was first
introduced L,, Charnes and Cooper in 1955 [1]; more explictly defined by the
same authors in 1961 [21; and further developed by ljiri [3] during the 1960's.
The first books dedicated to GP by Lee [4] and Ignizio [5] appeared during the
early to mid 1970's.

In the 1970's GP and its variants were applied to many different subject
areas. These include academic resource planning [6, 7], accounting [8], agricul-
tural planning [9], energy forecasting [10], portfolio management [4, 11], water
resource planning [12], library management [13], and media scheduling [14].

J Address for Carrespondence: Dr. M. Tamiz, School of Mathematical Studies, University
of Portsmouth, Mercantile House, Hampshire Terrace, Portsmouth, PO1 2EG, England.
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Questions were raised as to the effectiveness of GP as an application tool
by Zeleny [15] and Harrald [16] during the late 1970's and early 1980's, but GP
still grew in popularity judging by the increase of papers applying GP during
the 1980's. Table I shows the number of papers on the subject of GP (both
theoretical and applicational) during the past decade, in the Journal of the Op-
erational Research Society, which may well be considered to be a representative
sample of GP publications.

Table 1 : Frequency of GP papers in the
Journal of the OR Society

10-

9- Total

Theoretical

= 6- Application
0.

05
.a4 "

E
Z 3.

2-S

0 , ' , , I
78 79 80 81 82 83 84 85 86 87 8' 89 90 91

Year

The results show a continuing healthy interest in GP. Among the application
areas utilised or extended in the past ten years are farm growth planning [17],
diet planning [18, 19), locational analysis [20, 21], academic resource planning
[22, 23], manpower planning (24], police scheduling [25], portfolio analysis [26],
interest rate models [27], engineering [28], and manufacturing (29].

With the onset of powerful computers, sophisicated algorithms have been
developed by Ignizio [30], Schniederjans and Kwak (31], and others [32, 33, 34].
Olson [35] compares computational time for four GP algorithms and demon-
strates the benefits of using Revised-Simplex and Primal-Dual algorithms to
solve GP problems. These have made solutions to large scale GP problems
possible and several papers have been published exploiting this [24, 25, 361.
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Work has also continued into special case GP algorithms: Integer, Zero-One,
Fuzzy, Interactive and Chance-Constrained. A breakdown of publications in
these areas is given in Romero [37]. In total he lists 355 papers dealing with
GP applications in 26 distinct areas.

Research has been done to apply other Multi-Criteria and Management Sci-
ence techniques to Goal Programming. These include interactive multi-criteria
methods [38], 'Delphi' techniques [39, 40], Saaty's [41) analytical hierarchy ap-
proach [36, 23, 39], and resource planning and management systems(RPMS)
networks [42]. Recently papers have been published dealing with some of the
perceived 'errors' in G.P [37, 40, 43]. and explaining how these can be avoided
by the correct setting of weights, goals, priority levels etc.

The remainder of the paper will be divided into four sections. Section 2
will deal with lexicographic(pre-emptive) GP, section 3 with weighted GP(non
pre-emptive), section 4 with the connection between utility functions and GP,
finally section 5 will draw conclusions as to the current direction of GP and the
direction of the authors' future research.

2 Lexicographic GP

Of the 355 papers mentioned by Romero [37], 226 use the concept of Lexico-
graphic GP(LGP), which requires the pre-emptive ordering of priority levels.
The standard LGP model can be algebraically represented as:

Le mrin a = (gl(n, p), g 2(n, p),. ....... , gK(n, p))

subject to,
fi(x)+ni-pi = bi i-I, ..... I m

This model has K priority levels, and m objectives, a is an ordered vector of
these K priority levels.

A standard 'g' (within priority level) function is given by:

gk(n, p) = akinI + . + ak..nm +1 3k,Pi . ..... +.Ok.Pm

This paper will summarize the development of algorithms to solve the LGP
model, work on the multi-dimensional dual [30, 44], and current thinking on
methods of priority ranking and weighting within the priority levels. Some
applications of LGP will be commented on, in an effort to outline which types
of problem are suitable for an LGP approach, and which are better solved using
other techniques.

3 Weighted GP

Weighted (or non-pre-emptive) GP(WGP) requires no pre-emptive ordering of
the objective functions. Instead all the different deviations are placed in a single
priority level objective with different weights to represent their importance.
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2 Lexicographic GP

Of the 355 papers mentioned by Romero [37], 226 use the concept of Lexico-
graphic GP(LGP), which requires the pre-emptive ordering of priority levels.
The standard LGP model can be algebraically represented as:

Le mrin a = (g1(n, p), g2(n, p) ....... gK(n, p))

subject to,
fi(x) + ni - pi = bi i = 1,. .... I m

This model has K priority levels, and m objectives, a is an ordered vector of
these K priority levels.

A standard 'g' (within priority level) function is given by:

gt(n, p) = a&n 1 -I- ..... + knm +)tpi . ..... + #k,,Pm

This paper will summarize the development of algorithms to solve the LGP
model, work on the multi-dimensional dual [30, 44], and current thinking on
methods of priority ranking and weighting within the priority levels. Some
applications of LGP will be commented on, in an effort to outline which types
of problem are suitable for an LGP approach, and which are better solved using
other techniques.

3 Weighted GP

Weighted (or non-pre-emptive) GP(WGP) requires no pre-emptive ordering of
the objective functions. Instead all the different deviations are placed in a single
priority level objective with different weights to represent their importance.
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Algebraically, a WGP has the following structure:

k
Min + =+,p,)

i=1

Subject to,
fi(x)+ni--pi=b i=1.m

x E C,

Where C. is an optional constraint set. Of interest here are the problems
caused by incommensurability, i.e. objective functions being measured in differ-
ent units, and techniques used to overcome this. As in the LGP case, application
areas will be outlined.

4 Utility Functions

The third section will deal with the connections between utility functions and
the different types of GP. It will explore the literature on the problems caused in
reconciling LGP and utility function theory. It will also examine recently devel-
oped techniques to model GP's more closely around their underlying objective
functions [45].

5 Summary and Conclusions,

The final section will draw conculsions as to the scope and limitatior.s of GP
and highlight areas in which the authors intend to conduct further research.
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MULTI-STAGE ECONOMIC LOT SCHEDUUNG PROBLEM

Ayp.gOi Toker Teal and Nesim Erkip
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06531. Ankara, Turkey

The Economic Lot Scheduling Problem (ELSP) is to economically

schedule lots of one or more products on a single machine.

Demand Is constant, backlogging Is not allowed and the planning

horizon is infinite. The problem Is to minimize total operating cost per

unit time which Is comprised of setup costs and inventory costs.

Setup costs are incurred whenever a production for a lot Is begun

and inventory carrying costs can be defined as the time value of

money tied up in inventory.

An extension to single machine/facility problem is the study of

environments where products are manufactured through several

operations. Such systems are, In general, called as multi-stage

production systems. Multi-stoge production systems received a lot of

academic attention In recent yeais focussing on the control of worik-

In-process Inventory and Its functional relationship to the

manufacturing cycle time. It Is a very well known fact by now, the

larger the production lot size, the longer the manufacturing cycle.

which In turn, Increases the work-in-process inventory. There exists a

vast literature modelling this relationship to varying degrees in

different models for different system configurations.
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The Multi-stage Economic Lot Scheduling Problem (MS-ELSP) brings

together two important problem charactedstics Inherent to multt-Item

and multi-stage problems. In a multitem problem, the main Issue is

that of creating schedules which avoids the interference that is likely

to occur when two or more products compete for the some facility.

We will refer to this as the "feasibility Issue'. In a multi-stage

environment, the production should be synchronized so that

concurrent production of the same lot Is not possible In the

consecutive stages. This characteristic leads to the definition of work-

in-process Inventory which. In fact, is a tool for the synchronization or

production among stages. Thus. in multi-stage problems, creating

schedules owing this property will be referred to as 'consistency

issue. This study addresses the Multi-stage Economic Lot Scheduling

Problem with the objective of determining feasible and consistent

schedules which result from the conventional tradeoff between setup

costs and Inventory holding costs comprising the total cost of a

schedule.

In this research, we restrict the study of MS-ELSP to serial systems

where there are m products to be manufactured through n distinct

stages. We first analyze the two product - two stage problem. In

order to guarantee feasibility, common cycle solutions in which the

possible values of cycle times for al Items are constrained to a single

cycle time value, T, are sought for. In a two-stage production

system, production of a lot on the second stage cannot begin until

its production on the first stage is completed. Therefore, production

between stages should be synchronized so that we end up with

consistent schedules. To ensure consistency, we define a ccnstraint
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for each product which also provide Information about the work-In-

process Invtodes.

Another Important point In this study Is the presence of nonnegative

setup times. Setup times mean a loss In the productive capacity and

their effect on lot sizes is the most significant when the capacity

uti'lzation Is high. On the other hand, work-In-process Inventories

tend to Increase with Increasing capacity utilizations. Therefore,

ignorance of setup times will result In overestimated lot sizes due to

underestimation of work-in-process Inventories.

The mathematical programming formulation of this problem Is

developed where the objective function is nonlinear with a linear set

of constraints. Seffing the cycle time to a fixed value, we first

'Inearize the objective function. By using the dual problem and

complementary slackness, the optimal solution of this problem and

thus the optimal cycle time for the two product - two stage problem

are obtained. Besides, we have the exact terms for the work-In-

process Inventories (queueing Inventories: Inventory that built up on

the previous stage If the successor stage is busy with processing the

other products) since they can be expressed explicitly as analytical

functions of the cycle time. Then, we generalize our result to multi-

product case In a two stage system which constitutes a basis for the

analysis of the m-product, n-stage economic lot scheduling

problem.

Key words: Economic Lot Scheduling Problem, multi-stage
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* u. tus paper we present computational experience with a primal-dual interior point for mnooth convex
programming problems oi the type

rain eTz

s.L. (1)
gjx) <0,

whe-e c 1 R'n and g : R" -, R'" Is a vector-valued function. We assume that each component g, is
onnvex Let s E If m , be the vector of slack variables. The inequality constraints in (1) are replaced by

g(X)+ = 0, s>0.

Civen a parameter u > 0, we associate with (1) the barrier problem

rai-n crTx_-i ln s,
i~ 1

st. (2)
3(X) + S = U

%V/z a..ume that Slater's condition holds:

,tssumLption 0. ThFerr ts an x E Rn ,uch that g(x) < 0.

.,'e also assum-

-zsutmption 0.2 The set {x : y'x) < 0 and cTX <_ } is boQunded for ail 0.

Under these a.ssump~ions Problem (2) has a soluiion. The necessary and sufficient conditions for opti-
niality, narnely the Karush-Kuhn-Tucker equationm. or KKT equations, are

"'s- Ae = 0 (3)
g(X)+s = 0 (4)

,O4) y+c = 0, (5)

with s > 0 and y > 0. Here

is the Jacobian matrix of . and y E R m is a vector of dual variables.

L~et
F: R"' x R x R" - " ! x R"

be a multi-valued function defined by

F(z)= (Fp)=(IL
with z = (y, s, x). F also depends on the parameter p > 0. With this notation, the KKT system is simply
F(z) = 0.

We a!so introduce the Lagrangean

L(y; x, s) = crT + YT(g(X) + 8). (6)
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The KKT system (3) - (5) can be rewritten as

OL aL
Ya-Ae=O, -=O, and -=0.

a8x 43

Following usual terminology, a point z = (y, s, z) is interior ify > 0 and s > 0. We do not require it to
be primal or dual feasible. At such a point, we define the Newton direction dz = (dy, ds, dz) by

aF
dz +F=0. !7)

Note that

aF a2 L 02 L
-- = 0 -y-s IyaxI 2L 0 2L

Oxay 0 X---

with
a2L 22 L Og 82L ,0g), a 2 L m (92g,oya--3s oyax a-x' 0• -a •:• ax a2 X

Since the g, are convex, -- is positive semi-definite. Let us make the further assumption

Assumption 0.3 Let y > 0 and s > 0. The matrix

O2L + 2L. S-1 a2L
H := _ + -

is positive definite.

A sufficient condition for that is:

a2L a2g,

is positive definite, or a has full row rank, or both.

Under Assumption 0.3, 'F is regular at any interior point. Thus

/ F -'
dz=- ya-} F.

Let us explicitly write and solve the system (7) in dy, ds and dx:

Sdy+Yds+ F, = 0

ds + -Ldx + Fp = 0

a2L , 2L
,--ay + T22-Ld + ,d = 0.

In these expressions we used the fact that 8 = 1.
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The algorithm goes as follows: Given an interior, but not necessarily feasble, point, we compute the
search direction dz associated with p. Then a step is taken along that direction such that the interior
property is maintained. Namely, let 6 := max(a : y + ady >_ 0, s + ads >_ 0 and let 0 -< I . Then
the next iterate is given by

x :- x+-yadx

y y *+-yady.

Te choice of p is adaptive. For "normal" steps, we take -- = . If minisa _ .,rk, the vector Ys is
considered excessively unbalanced and we take p - . This step is named "centering".

We tested our algorithm on a sample of medium size random problems. We primarily studied the effect
of varying the size of the problems. We observed that the number of iterations increases slowly with the
number of constraints and, surprisingly enough, it decreases with the number of free variables in the case
of quadratically constrained problems.

We analyzed the influence of centering and showed it to be positive. We also studied alternative strategies
for the step size. It turns out that taking a fixed fraction of the maximal step size works well in practice.
Moreover the fraction can be extremely close to 1 without any negative effect on the performance of the
method. Finally, we looked at different choices for the starting point.

"We applied this algorithm to linear programming problems. The algorithm behaves a bit differently than
with quadratic constraints. The iteration count increases both with the number of constraints and the
-lumber of free variables. For the former the increase is slower. The figures are reasonable.
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I INTRODUCTION

Mathematical programming and theory of scheduling have a lot of optimiza-
tion problems which are NP-hard in spite of their very simple structure. Thus these
problems are considered to be difficult to solve. But some of them are easy in the
sense that there are straightforward ways to generate feasible solutions of them, e.g.
the knapsack problem, the TSP problem and many scheduling problems.

One of them is the scheduling of identical parallel machines where the max-
imal completion time has to be minimized. This problem is the topic of this ex-
perimental study. It has several heuristics. The two basic ones are Graham's list
scheduling and the multi-fit algorithm. There are known upper bounds for the
relative accuracy of the heuristic solutions provided by these methods. The two
algorithms have quite different strategies. This is the reason that some problems
worst from the point of view of list scheduling can be solved exactly by the multi-fit
algorithm and vice versa. This gives the question that how bad accuracy can have
the better of the list scheduling and the multi-fit solutions. This was the initial ques-
tion of this research. Another algorithm called interchanging method has been also
investigated. The research made necessary to sharpen the well-known lower bound
of the optimal value of the objective function, too.

2 THE SCHEDULING PROBLEM

In the cla.ssical probhlem of the scheduling of parallel machines n jobs have
to be distributed among Yn identical machines in such a way that the makespan is
minimal.

The whole operation starts at time 0. The machine independent processing
times are denoted by p3(j 1,....n) which are positive integers. It is easy to see
that there is at least one optimal solution such that the machines start to work at
t=0 and are working without any idle time until all jobs assigned to them have been
finished.

Let Ci be the completion time of job j. The maximal completion time, i.e.
max{C, : j = I, ... , n}, is denoted by C'.

Theorem 1 [Graham 69], [Coffman et al. 78] In any problem

max{ I pi, max{p, ) = I, ... ,n}

< C. < (1)
max{ _ p., IIIax{,I j = 1,...,n}}.O
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The interval in which the optimal value must lie is denoted by [L, U), i.e.

in
L rmax{-ZE p3 ,max{pi: -=1,...,n}}] (2)

and

U = [max( 1j,ax, = : ,...,}'j. (3)

Both the list scheduling and the multi-fit algorithm start with the deter-
mination of the nonincreasing order of the processing times. The two algorithms
assign the jobs to machines in that order. Therefore without loss of generality it
may be assumed that

P > P2 >... > Pn (4)

The rule of the list scheduling is that

every job is assigned to a machine having minimal current load. (LS)

Theorem 2 [Graham 69] Let C(LS) be the value of the solution provided by the list
scheduling. Then

C( LS) < 4 1 0(5
C" - 3 3m

Theorem 3 [Graham 69] If thcre is an optimal solution which assigns to each ma-
chine at most 2 jobs, then the solution give?, by the list scheduling is optimal. 0

The multi-fit algorithm consists of two parts. A greedy method is the in-
ternal part and a logarithmic s:carlh is tlh external part which organizes the ap-
plications of the greedy method. For the internal part an upper bound K of tile
optimal value is assumed. The greedy method assigns each job to the first machine
into it fits not exceeding the upper bound K. In the external part a current lower
bound and a current upper bound are assumed and are denoted by lc and uc. For
the internal part K is chosen as "+u'. If the greedy method was able to find a
solution pot worst then K, then tic becomes [KJ, otherwise Ic = [K]. The process
is repeated until the condition

uc = Ic

is not satisfied. Notice that it follows from the assumption of tile integrality of the
processing times that the number of applications of the greedy method is O(log(U -
L)). Thus the multi-fit algorithm is polynomial.

Theorem 4 [Friesen 84] Let C(AMF) be the value of the solution provided by the
multi-fit algorithm. Then

C(MF) < 1.20 (6)
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A third heuristic method called interchanging algorithm has been applied
in this research. It makes the following steps starting from any solution. It inter-
changes one job of the most loaded machine with one job of another machine. The
interchange is possible if and only if the maximal completion time is decreased in
this way. Let s and 1, resp., be indices of the most loaded and the other machines,
resp. The current load of the machihes are denoted by L, and L,. Suppose that the
job i of machine s is interchanged with job j. Then the following two conditions
must hold

Pi > p, (7)

and

Lt + pi a- pj < L3. (8)

In the current version if a possible interchange is found then it has been executed.
The order of checking Conditions (7) and (8) is as follows. The jobs of the most
loaded machine are compared with the jobs of another machine taking the other
machines in an iacreasing load order. The jobs of the two machines are taken in a
decreasing processing time order. One job of the most loaded machine is compared
with all of the jobs of the other machine. If no possible interchange is found then the
next job of the most loaded machine is taken. The number of comparisons of one
iteration are 0(n ). To get a polynomial algorithm the number of interchanges has
been limited by m + 2. In the current version the solution provided by list schedul-
ing is the starting point. This algorithm is one of simplest possible interchanging
methods. In more general a subset of jobs can be interchanged for another subset of
jobs. In that case the complexity of the select.ion of the two subsets is much higher.

3 IMPROVEMENTS OF TIlE LOWER BOUND

The randomly generated problems have not been solved with any kind of
enumerative methods. One easy way to prove the optimality of a solution is that
the value of it and the lower bound coincide. Therefore it was important to find
some ways to improve the lower bound.

In (2) only two information are taken into consideration, the average load
and the maximal processing time. The following two sharpening of the lower bound
are based on the fact that what is the number of jobs which must be assigned to
certain machines.

Theorem 5 Assume that (4) holds. Then

C" >_ Pn..._fl+, + ... + P'i 0 (9)

Theorem 6 Assume that (4) holds. Let

-n I
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If r > 1

C -n, mi p . ,-0 (10)

In some cases there are jobs which are not effecting C*, because their pro-
cessing times are relatively very small. In that cases the following observation is
useful.

Theorem 7 Let S be any subset of the jobs. Let Ls be any lower bound for the
problem defined by the jobs those in S. Then Ls is a lower bound for the original
problem. 0

Theorem 8 Let k be any index with 1 < k < n. Assume that: (i) the list scheduling
has assigned until that point exactly k jobs to machines, (ii) none of the machines
has more than two jobs, (iii) Pk-2 + Pk-I + Pk is at least as great as the current load
of any machine. Then the current maximal load is a lower bound for the optimal
value of the problem. C

Theorem 9 Let k be a fixed index and

Then

.1 COMPUTATIONAL EXPERIENCES

The computational experiences have been made in three phases. In the first
phase about 500.000 problems belonging to different classes have been generated.
In this phase some observations have been made which modified the objectives of
the research. The second phase was the main one in which 1.200.000 problems
have been generated in a wide range of problem classes to find difficult problems.
Further attempts have been made to find more difficult problems in the most hopeful
problem classes.

Definition 1 Let C(LS) and C(MF) and C(IC) and C" be, resp., the value of the
solution provided by the list scheduling and the multi-fit algorithm and the inter-
changing method and of the optimal solution, resp. A particular problem is called
first order difficult if the value

min{C(LS), C(A IF)} (11)

C.
is high. It is called second order difficult if the value

mnin{C(LS), C(IC), C(M F)) = min{C(IC), C(MF)) (12)

C. C.
is high.
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This definition is not correct in a strict mathematical sense, because the
meaning of the word "high" is undefined. This meaning has been determined during
the experiences.

A problem class is determined by the following parameters: m - the number
of machines, n - the number of jobs., p - the maximal possible processing time; the
processing times are generated randomly by the (1,p] integer uniform distribution.

In the experiences the following formulas have been used instead of (11)
and (12)

min{ C(LS), C(M F)) (13)

L
and

min{C(IC), C(M F)} (14)
L%

where L is some lower bound of the optimal value of the objective function.

4.1 Observations of the First Phase

In the first phase only the list scheduling and the multi-fit algorithm have
been used.

At the beginning of the experiences L has been chosen as L. Some problems
seemed to be difficult although an optimal solution has been obtained by one of the
methods. In some cases this fact could be proven by one of the improvements of the
lower bound discussed in Section 3.

Some problems had just the opposite behaviour. Here the lower bound
coincided with the optimal value. In many cases this fact could be proven by the
interchanging algorithm. This is the reason that this method had to be involved
into the investigations.

Among the most difficult problems found in this phase there were many
such that the smallest processing time was relatively great. Therefore in the second
phase of the experiences the generation of the the problems has been modified as
follows. The first thousand problems has been generated as earlier. In the case of
the problems of the second thousand the processing times were increased by 1, in
the case of the third thousand by 2, e.t.c. Thi' cannot be applied for all of the
classes, because in some cases if the increase is not less than a certain value, the
problem regardless the generated random numbers becomes trivial.

The problems which seemed to be difficult were belonging to two different
categories. The first one is the set of first order difficult problems. The most difficult
problem in this sense was the following. n = 10, rn = 3 and the processing times are
30, 29, 24, 18, 17, 17, 17, 14, 13, 13. The solution provided by the list scheduling
is as follows: MI: 30, 17, 13; M2: 29, 17, 14; M3: 24, 18, 17, 13. The multi-fit
solution is: Ml: 30, 29, 13; M2: 24, 18, 17, 13; M3: 17, 17, 14. Both of them have
the value 72. But the optimal solution is the following: MI: 30, 17, 17; M2: 29, 18,
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17; M3: 24, 14, 13, 1:3. The value of it is 64. Since that time Definition 1 has had
the meaning that a problem is first order difficult if

min{C(LS), C(MPF) } 9

The computationally difficult problems belong to the second category. In
the case of such a problem it is difficult either to find the optimal solution or to
prove the optimality of a solution generated by one of the heuristics.

4.2 Experiences of the Main Phase

In the second phase an intensive search has been carried out for difficult
problems. 100.000 problems have been generated in each of the problem classes.
The generated solutions are within 105% and even 101% of the improved lower
bound in the case of a very great part of the problems in each class. These results
are summarized in Table 1.

iL turned out that none of the list scheduling and the multi-fit algorithm is
superior to the other one. This is indicated by the numbers of problems such that
the appropriate heuristic solution is within 101%. The number of problem classes
for which a method is superior to the other one is approximately is the same for
both algorithms. The behaviour of both methods are very different in the different
classes. But the "the better of list scheduling and multi-fit" seems to be much stable.

n/r/p, II 101% 1 101% 105% 105%11
LS-MF IC-MF LS-MF IC-MF

10/3/15 88067 94179 98817 99897
15/3/15 95177 99441 99997 99999
10/3/30 73970 85831 97418 99815
15/3/30 89662 99002 99999 100000
10/3/60 45787 69949 94304 99582
15/3/60 80167 98599 99996 100000
30/3/15 99910 100000 100000 100000
30/3/30 99917 100000 100000 100000
30/3/60 99132 100000 100000 100000
10/5/15 98244 98245 99043 99044
20/5/15 89275 97461 99995 100000
60/5/60 100000 100000 100000 100000

Z 960051 1043707 1089569 1098337
percentage S7.27 94.88 99.05 99.85

Table 1: The numbers of problems having good heuristic solution



593

parameters M F LS
10ý3/15 87795 1318
15/3/15 7324 93662

10/3/30 73529 950
15/3/230 12688 86078
I0/3f60 44898 1568
15/3/60 23804 72245
30/3/15 26577 99725
30/3/30 50626 99591
30/3/60 42090 99132
10/5/15 98236 9997
20/5/15 3649 87973
60/5/60 100000 99111

Table 2: Comparison of the list scheduling and multi-fit heuristics

The most first order difficult problem which has been found in this phase i•i
the following. n = 10, m = 3 and the processing times are 15, 14, 12, 9, 8, 8, 8, 7,
6, 6. The solution provided by the list scheduling is as follows: MI: 15, 8, 6, 6; M2:
14, 8, 7; M3: 12, 9, 8. The multi-fit solution is: M1: 15, 14, 6; M2: 12, 9, 8, 6; M3;
8, 8, 7. Both of them have the value 35. But the optimal solution is the following-
MI: 15, 8, 8; M2: 14, 9, 8; M3: 12, 7, 6, 6. The value of it is 31.

4.3 Further difficult Problems

The aim of the third phase has been to find further difficult problems. Some
new problem classes are introduced, because it is likely onl the basis of the previous
experiences that these classes contain tile desired items. At the end of this phase
the number of the generated problems have exceeded 2.000.000.

The class 19/8/15 contained the known most difficult problem. The pro-
cessing times of it are: 21, 21, 20, 20, 19, 18, 17, 17, 16, 16, 16, 16, 12, 12, 12, II,
11, 10, 10. The multi-fit solution is: MI: 21, 21; M2: 20, 20; M3: 19, 18; M4: 17,
17; M5: 16, 16, 10; M6: 16, 16, 10; M7: 12, 12, 12; M8: 11, 11. The value of it
is 42, which is achieved at MI and M5 and M6. The solution provided by the list
scheduling with value 43 is this: M1: 21, 11, 11; M2: 21, 12; M3: 20, 12, 10; M4:
20, 12, 10; M5: 19, 16; M6: 18, 16; M7: 17, 16; M8: 17, 16; In the optima; solution
the completion time is 37 on all of the machines except the last one where it is 36:
MI: 21, 16; M2: 21, 16; M3: 20, 17; M4: 20, 17; M5: 19, 18; M6: 16, 11, 10; M7:
16, 11, 10; M8: 12, 12, 12.

The development of the accuracy of the most known first order difficult
problems has been: 2 < 2 < UL The value 42/37, which n not proven to
be an upper bound, is less than the value 72/61 guaranteed by the algorithm of
[Friesen-Langston 86], which uses many operations from a practical point of view.

There was no improvement in the position of most second order difficult
problem in this phase.
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4.4 Some Other Observations

Some other observations are obtained from the experiences. An important
one is the following. If L : U then U is far from the optimal value. The 10/5/15
ciass is the only one where the ratio (13) had a value greater then 1.22. The observed
greatest value is 1.42. -

The aim of the improvements of the lower bound was to decrease the number
of cases to check. In Table 5 the the number of problems which have been proved
to be solved within 101%, and the observes worst (14) ratio observed before any
improving and after improving (without the application of Theorem 9) are provided
for the better of multi-fit and interchanging procedure.

parameters 101% (14) 0
1 before j after before I after

10/3/15 88078 89871 1.217 1.120
15/3/15 99344 99344 1.030 1.030
10/3/30 65089 68313 1.262 1.102
15/3/30 99098 99098 1.032 1,032
10/3/60 44046 71572 1.211 1.100
15/3/60 99045 99045 1.032 1.032
30/3/15 100000 100000 1.005 1.005
30/3/30 100000 100000 1.007 1.007
30/3/60 100000 100000 1.005 1.005
10/5/15 :37056 88469 1.412 1.200
20/5/15 97240 97240 1.040 1.040
60/5/60 100000 100000 100000 100000

Table 3: The effect of the improvements of the lower bound
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Abstract

Tabu Search is a metastrategy for guiding known heuristics to overcome local cp-
timality. Successful applications of this kind of metaheuristic to a great variety of

problems have been reported in the literature. Recently some implementations cf
tabu search on parallel computers have come up. Whereas these implementations
are tailored to specific problems we attempt to provide ideas for a more general

concept for developing parallel tabu search algorithms.

1 Introduction

Due to the complexity of a great variety of combinatorial optimization problemis, hieuri~tic
algorithms are especially relevant for dealing with large scale problems. The main draw-
back of algorithms such as deterministic exchange procedures is their inability to contintu
the search upon becoming trapped in a local optimum. This suggests consideration oT
recent techniques for guiding known heuristics to overcome locai optimality. Following

this theme, the application of the tabu search metastrategy for solving combinatorial
optimization problems is investigated.

The key issue in designing parallel algorithms is to decompose the execution of tile
various ingredients of a procedure into processes executable by parallel processors. I:npro-
vement procedures like tabu search or simulated annealing at first glance, however, have

an intrinsic sequential nature due to the idea of performing the neighbourhood searcmh

from one solution to the next. Therefore, there is not yet a common or generally applica-
ble parallelization of tabu search in the literature. In tile sequel we attempt to describe
some general ideas and a classification scheme for parallel tabu search algorithms.

In Section 2, we present an outline of kabu search. Before describing some concepts
for parallel tabu search algorithms in more detail (see Section 4), we briefly discuss some
of the common parallel machine models and algorithms in Section 3. Some examples
are given in Section 5 and finally some conclusiomis are drawn (Section 6). The attempt,
of course, is not to give a complete treatment of parallel tabu search buit to sketch the
potential this area of research carries. For a more detailed treatment of the ideas of this
paper see VoB (1992).
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2 Tabu Search

Many solution approaches are characterized by identifying a neighbourhood of a given
solution which contains other (transformed) solutions that can be reached in a single
iteration. A transition from a feasible solution to a transformed feasible solution is referred
to as a move and may be described by a set of one or more attributes. In a zero-one
inp-eger programming context, e.g., these attributes may be the set of all possible value
assignments or changes in such assignments for the binary variables. (Then two attributes
denoting that a certain binary variable is set to I or 0, may be called complementary to
each other.) Following a steepest descent/mildest ascent approach, a move may either
result in a best possible improvement or a least deterioration of the objective function
value. Without additional control, however, such a process can cause a locally optimal
solution to be re-visited immediately after moving to a neighbour.

To prevent the search from endlessly cycling between the same solutions, tabu search
may he visualized as follows. Imagine that the attributes of all moves are stored in a run-
ning list, representing the trajectory of solutions encountered. Then, related to a sublist
of the running list a so-called tabu list may be defined. Based on certain restrictions, it
keeps some moves, consisting of attributes complementary to those of the running list,
which will be forbidden in at least one subsequent iteration because they might lead back
to a previously visited solution. Thus, the tabu list restricts the search to a subset of ad-
missible moves (consisting of admissible attributes or combinations of attributes). This
hopefully leads to 'good' moves in each iteration without re-visiting solutions already
encountered. A general outline of a tabu search procedure (for solving a minimization
problem) may be described as follows:

Tabu Search

Given: A feasible solution z" with objective function value z'.
Start: Let x := x* with z(x) = z'.
Iteration:
while stopping criterion is not fulfilled'do begin

(1) select best admissible move that transforms x into x' with objective func-
tion value z(x') and add its attributes to the running list

(2) perform tabu list management: compute moves to be set tabu, i.e., update
the tabu list

(3) perform exdcanges: x := x', z(x) = z(z')
if z(z) < z* then z" := z(x),x* := x endif

endwhile
Result: x" is the best of all determined solutions, with objective function value z*.

For a background on tabu search and a number of references oil successful applications
of this inetaheuristic see, e.g., Clover (1989, 1990), Clover anid Laguna (1992), and VoB
(1992).

'A possible stopping criterion can be, e.g., a prespecified tinie limit.
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Tabu List Management

Tabu list management concerns updating tile tabu list, i.e., deciding on how many and
which moves have to be set tabu within aiiy iteration of tile search. Up to now, the most
popular approach in literature is to apply static methods like the tabu navigation method
(TNM).

In TNM, single attributes are set tabu as soon as their complements have been pait
of a selected move. The attributes stay tabu for a distinct time, i.e. number of iterations,
until the probability of causing a solution's re-visit is small. The efficiency of the algorithm
depends on the choice of the tabu status duration, i.e. the length tLsize of the tabu list.
(In the literature often a 'magic' tl-size=7 is proposed.) For the sake of an improved
effectivity, a so-called aspiration level criterion is considered, which permits the choice of
an attribute even when it is tabu. This can be advantageous when a new best solution
may be calculated, or when the tabu status of the attributes prevent any move from
feasibility.

The static approach, though successful in a great number of applications, seems to
be a rather limited one. Another probably more fruitful idea is to define an atLribute
as being potentially tabu if it belongs to a chosen miove and to handle it in a candidate
list first. Via additional criteria these attributes can be definitely included in th3 tabu
list if necessary, or excluded from the candidate list if possible. Therefore, the candidate
list is an intermediate list bctween a running list and a tabiu list. Glover (1990) suggests
the use of different candidate list strategies in order to avoid extensive computational
effort without sacrificing solution quality. In the sequel, we sketch the following dynamic
strategies for managing tabu lists: the cancellation sequence method (CSM, in a revised
version, cf. Dammeyer et al. (1991)), and the reverse elimination method (REM).

CSM as well as REM both use additional criteria for setting attributes tabu. The
primary goal is to p)ermit the reversion of any attribute but one between two solutions
to prevent from re-visiting the older one. To find those critical moves, CSM needs a
candidate list that contains tLie complements of attributes being potentially tabu. This
active tabu list (ATL) is built like the running list where elimination of certain attributes
is furthermore permitted. Whenever an attribute of the last performed move finds its
complement on ATL this complement will be eliminated from ATL. All attributes bet-
ween the cancelled one and its recently added complement build a cancellation sequence
separating the actual solution from the solution that has been left by the move that con-
tains the cancelled attribute. Any attribute but one of a cancellation sequence is allowed
to be cancelled by future moves. This condition is sufficient but not necessary, as some
additional aspects have to be taken into account so that CSM works well.

The method works well for the case that a move consists of exactly one attribute, i.e.,
when so-called single-attribute moves are considered instead of multi-attribute moves. In
addition, the corresponding parameters have to be chosen appropriately (e.g. time tabu
list duration of a tabu attribute, and how to apply the aspiration level criterion). Ap-
plying CSM to miulti-attribute moves needs additional criteria to prevent errors caused
by uncovered special cases. E.g. for paired-attribute moves (moves consisting of exactly
two attributes) those moves must be prohibited that may cancel a cancellation sequence
consisting of exactly two attributes (because none of them is tabu when choosing a move).
In addition, for building a cancellation sequence, the remaining attributes of the oider
and the current move are not necessarily taken into consideration. This depends on the
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order in which the move's attributes are added to ATL.
The conditions of TNM and CSM need not be necessary to prevent from re-visiting

previously encountered solutions. Necessity, however, can be achieved by REM. The idea
of REM is that a'y solution call only be rc-visited ill thc itext iteration if it is a neighbour
of the current solution. Therefore, in each iteration the running list will be traced back
.G determine all moves which have to be set tabu (since they would lead to an already
explored solution). For this purpose, a residual cancellation sequence (RCS) is built up
stepwise by tracing back the running list. In each step exactly one attribute is processed,
from last to first. After initializing an empty RCS, only those attributes are added whose
complements are not in tile sequence. Otherwise their complements in the RCS are
eliminated (i.e. cancelled). Then at each tracing step it is known which attributes have
to be reversed in order to turn the current solution back into one examined at an earlier
iteration of the search. If the remaining attributes in the RCS call be reversed by exactly
one move then this move is tabu in the next iteration. For single-attribute moves, for
instance, the length of ai l{CS must be one to eniforce a tabu move. Correspondingly, in
a slightly modified method ITEM2 all commoioi neighbours of the current solution and of
an already explored one will be forbidden. These neighbours were implicitly investigated
during a former step of the procedure (due to the choice of a best non-tabu neighbour)
and need not be looked at again (cf. Vo13 (1992)).

Obviously, the execution of REM and of REM2 represents a necessary and sufficient
criterion to prevent from re-visiting known solutions. Since the computational effort of
REM increases if the number of iterations increases, ideas for reducing the number of
computations have been developed (cf. Glover (1990) and Dammeyer and Voll (1991a)).

For applications and (sequential) comparisons of TNM, CSM, and REM see Dammeyer
and Vo13 (1991b) and Domschke et al. (1992).

Search Intensification and Search Diversification

A general idea for reducing the computational effort in a tabu search algorithm is that of
search intensification using a so-called short term memory. Its basic idea is to ob 'erve the
attributes of all performed moves and to eliminate those from further consideration that
have not been part of any solution generated during a given number of iterations. This
results in a concentration of the search where the number of neighbourhood solutions in
each iteration, and consequently the computational effort, decreases. Obviously the cost
of this reduction can be a loss of accuracy.

Correspondingly, a search diversification may be defined as a long term memory to
penalize often selected assignments. rihen the ineighbourhood search can be led into not
yet explored regions where the tabu list operation is restarted (resulting in an increased
computation time). An appealing opportunity for search diversification is created by the
idea of REM and REM2 resulting in REMt for t > 2 and integer. If at any tracing
step the attributes that have to be reversed to turn the current solution back into an
already explored one equal exactly I moves then it is possible to set these moves tabu
for the next iteration. Note that for the case of multi-attribute moves, due to various
combinations of attributes to moves, even more than t moves may be set tabu in order to
avoid different paths through the search space leading to the same solution. Accordingly,
search diversification is obvious.
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3 Parallel Machine Models

Over the years a great variety of architectures have been proposed for parallel computing.
The most widely known classification of parallel machine models (although somehow
limited) is given by Flynn (1966). lie distinguishes four general classes based on the idea
of whether single or multiple instruction streams are executed on either one or multiple
data set streams:

"* SISD (Single Instruction, Single Data) including the classical sequential computers

"* SIMD (Single Instruction, Multiple Data) including vector computers and array
processors

"* MISD (Multiple Instructions, Single Data)

"* MIMD (Multiple Instructions., Multiple Data) with the processors performing each
successive set of instructions either simultaneously (synchronous) or independently
(asynchronous)

Trhe above classificatioi of parallel mnacdine irodels miay lead to different classes of
parallel algoritlirhis. Vcctorized algorithms operate uniformly on vectors of data sets
(SIMD). Systolic ones operate rhythmically on streams of data sets (SIMD and synchro-
nous MIMD). Parallel processing algorithms operate on a set of synchronously commu-
nicating parallel processors (synchronous MIMD). Correspondiugly, asynchronous coin-
munication leads to distributcd processing algorithms (asynchronous MIMD and neural
networks).

In addition to architectural aspects comnmuniication networks are used to classify par-
allel machine models. For instance, it makes a dilfererce whether processors have si-
multaneous access to a shared memory, allowing communication between two arbitrary
processors in constant time, or whether they communicate through a fixed interconnection
network. Less formally, in certain models it is assumed that there is a master processor
controlling the communication of the network, with the remaining processors of the net-
work called slaves. For a comprehensive survey on parallel machines and algorithms see
e.g. Akl (1989) and Van Leeuwen (1990).

The quality of parallel algorithms may be judged by a number of quantities, the most
important one being the speedup, which is the running time of the best sequential imple-
mentation of the algorithm divided by tihe running time of the parallel implementation
executed on a number of p processors. Similarly, given a prespecified time limit (cf. foot-
note 1) a scaleup may be defined as the ratio of the average problem sizes solvable with
a parallel implementation to a sequential imnplenmentation of the algorithm. With heuri-
stics, the solution quality attaipable may also be measured. The processor utilization or
efficiency is the speedup divided by p. The best one can achieve is a speedup of p and an
efficiency equal to one.

4 Parallel Tabu Search Algorithms

Due to the success and the underlying simplicity of the main idea of tabu search, recently
some implementations on parallel computers have come up tailored to specific problems.
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Surprisingly, to tile best of our knowledge, they are solely devoted to problems using tile
notion of paired-attribute moves: the travelling salesman problem, the job shop problem,
and the quadratic assignment problem (compare Section 5).

In a first step we shall describe a classification of different types of parallelism that
is applicable to most iterative search techniques (cf. VoO (1992)). Its basis is the idea of
having different starting solutions or candidate solutions (so-called balls, motivated by the
idea of mountains' !ike solution space where a ball is rolling to find a stable low altitude
state) as well as a number of different strategies, e.g. based on various possibilities of the
parameter setting or on the tabu list management.

"* SBSS (Single Ball, Single Strategy)

The algorithm starts from exactly one given feasible solution and performs its moves
following exactly one straLegy.

"* SBMS (Single Ball, AMultiple Strategies)

The algorithim starts frout exactly one given Feasible solution by the use of different
strategies where each strategy is performed omi a different, processor.

"* MBSS (Multiple Balls, Single Strategy)

The algorithm starts from different initial feasible solutions, each on a different pro-
cessor. The same type of instruction, i.e. strategy, is performed on each processor.

"* MBMS (Multiple Balls, Multiple Strategies)

The algorithm starts from different initial feasible solutions performing different
strategies.

in wiiat follows we discuss the above ideas in more detail with special emphasis oni

further principles of parallelism within specific strategies. For ease of description we
assume the notion of parallel or distributed processing algorithms.

SBSS

The single ball, single strategy idea is the simplest version, and obviously correspoonds to
Jhe idea of classical sequential computations (cf. the SISI)-mnodel). This, however, does
not restrict the possibility of parallelization.

Starting from ail initial feasible solution, the best move which is not tabu must be
performed. The search for this move may be done in parallel by decornposing the set of
admissible moves into a number of subsets. E.g. in a master-slave architecture each (slave)
processor may evaluate the best move in a specific subset. The best move of each subset
is communicated to the master who picks the overall best as tile transformed solution and
also performs the tabu list management.

To restrict the amount of communication necessary for synchronizing tile data each
slave could determine the best, possible move in its subset without observing any tabu
list, while the tabui list in the same time is updated by the master. Then tihe master picks
among all answers the best which is not tabu. If no such move exists, a second trial must
be made while each processor has to receive and to observe tile tabu list. Otherwise the
next iteration is to be perfornied.
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Additional ideas may be developed with respect to the specific strategies. In '1'N4.
the tabu list management may be done by each processor itself by simply providing the
most recent move (whose complemlenlt will be in the list). Ill CSM, the nlaster b)ilildI 01
cancellation sequences and partitions them to the slaves. i.e., every slave has t, e,,kihat,:.
a certain number of sequences. In subsequent iterations. the attributes oi the cnirrneit
moves are communicated. Whenever h cancellation sequence is reduced to I it wiili b
re-communicated to the master.

SBMS

In SBMS each processor executes a process which is one of the above L?.bu Jsett.-6. s. ,egics
with different tabu conditions and parameters. iike e.g. REMt for various i. For T'IM this
can be different (eventually randomly modified) tabu list lengths; for CSM. differc,•t tab:
durations may be considered. The (slave) processors are halted after a prespciit-ed 'ime
and the results are compared and the best one is calculated. A restart is possible wvtlththe
best or a good seed solution. Each strategy may take a different path through the search
space because of different tabu list management or parameter setting. A restart may be.
performed either with empty running and tabu lists or with a previously encountered list.

MBSS
The multiple balls approaches start front at most p (the munlber of processors available)

different initial feasible solutions, whose calculation can vary. They may be determined
either randomly or by applying different heuristics to the same problem. This may ambo
incorporate ideas involving different diversification and intensification strategies as des-
cribed above. A third possibility assumes one given feasible solution and starts with a
suitable subset of its transformed (neighbourhood) solutions. (Especially with REM2 i.
may be assured that even in future iterations there is no overlap with the initial feasible
solutions of the other processors.) 'Te single strategy approach assumes the appli(atioi!
of exactly one tabu search algorithm with the same parameter setting for all processorS.

As with SBMS, the processes may be halted after a specific time period to coordinate
their results and possibly to initiate a restart with new (hopefully) improved solutions.
If the processes are performed synchronously, then the stopping may be initiated after
having generated, say, in successive moves. On synchronous MIMD machines the latter
approach may be especially relevant. Note that the above-mentioned possibility of pa-
rallelization within SBSS is related to a method with m = 1 where the best transition is
evaluated.2 With respect to MBSS, this modifies to the evaluation of the p best moves
usable for a restart. For m > 2 this approach may be used as a look ahead method.

MBMS

The multiple balls, multiple strategies approach subsumes all previous classes, allowing
search within the solution space from different starting points with different methods or
parameter settings.

2This gives reference to incorporate different candidate list strategies. (Note tie correspondance to
ideas of beam search, cf. Glover (1990).)
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5 Examples

7n the -equei wae sketch some of O.ie ideas given in the previous sections with respect to well

:.nown combinatorial optimizat1ion problems. As mentioned above, we only found some

,vork or problems with the idea of paired-aattribute moves to perform the neighbourhood
4;earrli .Vc star' with rzi[spect t,; 6inary integer programming, exploiting single-attribute

Moves.9
Consider the SBSS concept. Also consider n decision variables in a binary problem

with ao (irnpiicit or expiicit) restriction on the number of variables set to either 1 or 0. We

may define simple ADD- ,,r i)iROi-moves 1y complementing the corresponding entries
1)f the binary variables zi. Assume the existence of 71 + 2 processors with n + 2 being

the master processor. The tabu list mamagement is performed by processor n + 1. In
any iteration of the search, each of the synchronously controlled processors i E {1,...,n}

receives the information whose variables' entry has been choscn to be exchanged as the
most recent move. This move is performed together with the reversion of xi. This usually
,an be done quite efficiently by reconstructing the previous solution stored at i with at

most one assignment complj)IemNented. Then i offers its objective function value to the

,aster who re-cafis all results of pro(cssors referriMg Co ioti-lalbu imioves (evaluated by

*.rocessor it + !). -(•,viously tims ap)proai(:i nay be generalized iii various ways to the more

-ýencrat classes (described above.
This concept may 'be applied. e.g., to the warehouse location problem (WLP), to

Seiner's probiem in graphs (SP). and to the imulticonstraint zero-one knapsack problem

(MCKP). E.g., for WLP this neighbonirhood search means a reallocation of costumers,

i.e., opening a new location i resunrs in re-allocating all costumers for which i is closer

;.han the depot currently ,ised. Correspondingly, closing a location i forces all costumers

receiving service from z to its seconld nearest location.
An eve:, mmore challenging reoplitfization problerm arises within SP. There, an itera-

ý,ion of the neighbourhood search may consist of changing a node-oriented binary variable

,od calculating a minimum spanming tree (MST) on the set of all nodes with entry 1 of

,1he corresponding variables. The question is, whether reoptimization may be carried out

either by solving the modified problem anew or by starting from a previous optimal solu-

tion found by the same processor (see Clover et al. (1992) for a corresponding sequential

approach with respect to MS'T').
If the number or weighted nmbner of variables with value I is limited (as for MCKP)

or fixed (as e.g. in the p-inedian problem) then the same a~pproach may be applied with

combined ADD/l)ROi'- or SWAP-moves leading to paired-attribute moves.

Malek et al. (i989) follow Oiwe SlIMS approach to solve travelling salesman problems

(TSI') by TNM with the 2-opt exchange as moves. The tabut attributes follow different

strategies in that they are restricted either to one or to the two cities that have been

swapped or to the cities and their respective positions in tour. lit addition different tabu

parameters were used on differentt processors. For another parallel tabu search algorithm

for ine TSP see Fiechter (i990).
The quadratic assignment problem (QAP) is treated by Chakrapani and Skorin-Kapov

(1991, 1992) by the use of SBSS and TNM with search intensification and search diversi-

iication performed sequentially while evaluating the moves in parallel. The set of moves

;s oartitioncd into disjoint subsets, each one on a different processor as described above.
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The neighbourhood search is performed by pairwise interchanges such that for V(n 2 '
processors available all moves can be evaluated in constant time, achieving a speedup cf
O(nv/logn). Battiti and Tecchiolli (1992) use TNM together with a hashing functi.on
and compare their algorithm also with a parallel genetic algorithm. Another parallel a!-
gorithm for QAP based on TNM (with randomly varying tlsize! has been presented b-,
Taillard (1991). It is an SBSS approach, too. The same idea has also been applied totlc"
job shop as well as to the flow shop problem (see Taillard (1989, 1990)). The latLer, ':V
fact, also describes a single-attribute based implementation with attributes corresponding
to objective function values. Chakrapani and Skorin-Kapov (1992) is especially reie~anlt
since its implementation is based on a coniectionist approach related tL) a Poltuzmaiii
machine (cf. Aarts and Korst (1989)).

6 Conclusions

We have summarized some ideas for developing parailel tabu search algorithlm3. Motivated
by a famous classification scheme for parallel machine models we proposed a classificaticxr
scheme for parallel tabu search algorithms. While research in this field is still in its infancy
we believe that reasonable achievements in the following two aspects will be provided.

9 Development of a framework for a general parallel tabu search algorithm that can
be applied to a wide range of combinatorial optimization problems.

* Empirical results for parallel tabu search algorithms tailored to specific problems.

Some results known from the literature (cf. Sectioi 5) support this feeling. Despite tUw;
emphasis on parallel tabu search, sequential testing is still far from complete. In addition.
the tabu search metastrategy should be tested on different classes of parallel algorithms
and machine models. Especially relevant seems to be a comparison of algorithw., Ia'-
bored to different hardware specifications like vector computers versus synchronouis ,mi
asynchronous MIMD machines. Hlowever, one should take itnto account identical user
specifications with respect to tabu search (e.g. parameter setting, definition of th~e neigih
bourhood). Note that our classification scheme is not restriced to parallel tabu search,
but may be applied for nearly any iterative search procedure, such as simulated annealing
or genetic algorithms.
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The work of a transport company (bus, train, etc.) may be

represented by a schedule which specifies the journeys to be

undertaken. Figure 1 is a graphical representation of part of

such a schedule, with each line showing the times that a service

begins and ends, and each '+' showing the time of a relief

opportunity at which the driver of that service may be replaced

by another driver. An indivisible period which must be worked by

the same driver (e.g. between two consecutive relief

opportunities) is called a workpiece.
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Ficure 1 - Graphical Representation of a Schedule
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transport company has many conditions that its duties must

satisfy, usually called the "union agreement". This agreement may

specify, for example, the maximum length of a working day and

durations of mealbreaks. There is usually a very large number of

different duties that could be used to cover a schedule.
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There are several computer systems which can be used to determine

a set of valid drivers' duties to cover a schedule provided by a

transport company. This paper will consider enhancements that

have recently been devised for one such system called IMPACS

(Integer Mathematical Programming for Automatic Crew Scheduling).

This system was developed at the University of Leeds by Wren &

Smith~l] and is now marketed by the Hoskyns Group. IMPACS has

mainly been used by bus companies (throughout the world) but it

has also been used by train and tram companies.

At the heart of the IMPACS system is an integer Programming model

which has two pre-emptively ordered objectives: to minimise the

total number of duties used to cover a given schedule and to

minimise a cost function which reflects both the wage cost and

undesirable features of duties. The model's constraints ensure

that all workpieces are covered at least once, with some

specially selected workpieces being covered exactly once. Also,

each duty is classified according to its type (e.g. early, late,

overtime) and side constraints can be added which limit the

number of duties of any type that are to be used.

Thus, the model is of the mixed set covering/partitioning type,

possibly with the addition of side constraints. Ongoing research

attempts to exploit further the special structure of the IMPACS

model and to take advantage of recent developments in

mathematical programming algorithms.
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The IMPACS model has previously been solved using the following

four-stage process. For the first three stages, the Linear

Programming relaxation of the model is used.

Staae 1 Minimise the total number of duties using a Primal

Simplex algorithm.

Stage 2 Add a constraint which ensures that the integral number

of duties does not increase and minimise the cost

function using a Primal Simplex algorithm.

Stage 3 If the total number of duties is not integral, add a

suitable constraint, and reoptimise using a Dual

Simplex algorithm.

Stage 4 Deternine an integer solution using Branch and Bound

techniques with constraint branching.

Optimisation within the IMPACS system is based on Ryan's ZIP

package(2]. The performance of this package has been improved by

incorporating Goldfarb & Reid's Primal Steepest Edge algorithm(3]

and a Dual Steepest Edge algorithm due to Forrest & Goldfarb(4].

This paper will consider a new strategy for solving the Linear

Programming relaxation. Enhancements to stage 4 are the subject

of separate work.



609

Each of stages 1 and 2 of the previous strategy typically involve

a large number of iterations, resulting in the time to solve die

Linear Programming relaxation being a significant proportion of

the total solution time. This is due to the objectives for stages

1 and 2 being different and the high degree of degeneracy

inherent in the model. Also, the constraint that is added at

stage 2 is fully dense, and this substantially increases

iteration timings.

These difficulties have been addressed by:

1. Using a single weighted objective function.

and 2. Solving the resulting model using a Dual Steepest Edge

algorithm.

The weight that is used to combine the two objectives is

relatively small, and is determined by applying an algorithm due

to Sherali[5] to the IMPACS model. To initiate the Dual Simplex

algorithm, an heuristic has been developed to produce initial

basic dual feasible solutions.

The paper will conclude with the presentation of computationai

results for real world problems with numbers of constraints in

the range 125 to 450 and numbers of variables in the range 4000

to 11000. The results suggest that the new strategy significantly

reduces solution timings.
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DERIVING THE DUAL OF AN INTEGER PROGRAMME:

ITS INTERPRETATIONS AND USES

H.P. Williams
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This talk will begin by discussing duality in Mathematics in a widel
context e.g. in the areas of Set Theory and Logic, Projective Geometry anc
Convex Polytopes. Some of the mathematical properties which are normally
expected of a dual will be listed e.g. Reflexivity and Symmetry. Linear
Programming (LP) and Congruence duality will then be examined for both its
mathematical properties and computational and economic uses e.g. Provirn
Optimality, Sensitivity Analysis and Pricing Imputation.

A number of possible Integer Programming (IP) duals will te
mentioned e.g. the Gomory-Baumol dual, Lagrangean dual and Surrogaie
dual. They all lack some of the above properties and in particular do not
provide a guaranteed proof of optimality.

It will be suggested that the most satisfactory dual arises from
examining the Value Functions and Consistency Testers of IPs. For Pure
IPs (PIPs) these take the form of Gomory Functions. Gomory functions are
built up by the repeated applications of the operations of

(i) Non-negative linear contributions.
(ii) Integer round-up.

(iii) Taking Maxima.
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These can be expressed in the form

Max(C 1, C2, -'-, Cn)(1

where the Ci are Chviital Functions which are built up from operations (i)
and (ii).

By comparison tle Value function of the Consistency Tester of the

,-orresponding LP relaxation will involve functions of the form

Max(C 1, C2 , -- , Cr) (2)

where r -<- P and Ci is obtained from Ci by dropping the operation (ii).

The Ci will therefore be non-negative linear conbinations of the right-
hand-side coefficients, arising from the dual vertices of the LP.

It will be shown that those Ci which correspond to a Ci in (2) can be
obtained by finding the Value function of PIPs over cones. This may be done
by obtaining the Hermite Normal Form of the corresponding basis matrix for
the LP relaxation. The resulting doubly recursive function of the right-hand-
side coefficients gives the Value function (and Consistency tester). It is
suggested that the depth of this recursion is a measure of complexity. The
problem of extending this method to give the Value function and Consistency
tester for a general PIP will be considered.

it will be shown that the Value function for a Mixed IP (MIP) is not
generally a Gomory function although the Consistency tester is. By
incorporating this objective as a constraint and finding the consistency tester
of this system it is then possible to characterise the Value function of the
MIP.

The Value function for certain MIP applications has considerable economic
importance since it shows how indivisible resources should be "priced". This
aspect will be considered in relation to the Fixed Charge Problem and the
Power Systems Loading Problem.



1 General Problem Description

Analysts frequently face the following problem: given a multivariate (possi-
bly correlated) population, how does one determine a good estimate of the
probability function (or some number of its moments) for a complicated func-
tion of the population's variables? The primary problem to consider then is
what is the most efficient way to sample from the input population, espe-
cially when sampling is extremely expensive and must therefore be limited
to a predetermined (small) sample size. The desire is to generate a sampling
plan which will be representative of the population, and produce estimates
of moments which have desirable statistical properties. However, since the
larger the sample, the larger the cost, there is a trade-off between generating
the best estimates and reducing the amount of sampling. In order to obtain
better estimates from sampling, analysts may determine them by using data
collected from a stratified sampling of the population.

A special form of stratified sampling is latin hypercube sampling.
In this stratification, the cumulative distribution function for each of the
n population variables is divided into m blocks. The intersection of these
blocks makes up a hypercube having m' cells. If all m' cells were sampled,
the sampling approach would be a "full factorial design". Since sampling
is assumed to be expensive, LHS limits the sampling to only m of the m"
possible cells. Thus, a LHS plan is not a hypercube, but is equivalent to a
rn x n matrix such that each of the m rows defines one sampling cell of a m"
hypercube.

The i0' row of a LHS sampling plan makes up what will be referred
to as "run iP. Defining this grouping as a run is motivated by the fact
that typical applications of LHS involve computer-based models where the
number of runs, m, is predetermined. To ensure that a plan offers a cross
section of the sampling space, an additional feature of LHS is that each block
of each variable must be picked once. Thus, each column of a LHS plan is a
permutation of the numbers 1 to m.
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Combinatorial optimization, by its broad nature, has been used
to model and solve a variety of problems including those arising in decision,
engineering, and physical sciences. The focus of this work is to consider
the solution of a sampling design problem using combinatorial optimization.
The particular design problem of interest here is minimum-correlation latin
hypercube sampling (hereafter referred to as MCLHS). The central point of
this research is the development of combinatorial optimization procedures
which provide MCLHS plans. This is an entirely new approach for finding
MCLHS plans.

We introduce integer programming (IP) formulations of this problem
and develop a procedure for determining minimum-correlation sampling de-
signs. We provide the obvious IP formulation of the MCLHS problem which
results in a problem having an exponential number of variables and a large
(polynomial) number of constraints. We then transform the problem into
a sequence of assignment problems with side knapsack equations, having a
polynomial number of variables. This decomposition was found by exploit-
ing the special structure of the problem and finding tight objective function
lower bounds. We note that even after the decomposition, the problem still
belongs to the NP-hard class. Although the decomposition and subsequent
development of solution procedures for the smaller problems are discussed
within the context of the sampling design problem, the approach may be
applicable to various permutation-related IP problems such as the general
quadratic assignment problem, assignment problems with side constraints,
and the asymmetric travelling salesman problem variation where the objec-
tive is to find a tour which meets a specific cost value. Thus, while the
research presented here focuses on solution approaches for the MCLHS prob-
lem, the general theory and findings might well prove useful for the solution
of other problems known to be NP-complete.

We begin with a description of the general LHS and MCLHS problems,
followed by integer programming formulations and a discussion of optimiza-
tion procedures developed.
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To describe the standard approach to LHS, we begin by writing the
vector of variables as (X1, X2 , ... , X,) and assume for the time being that the
variables are mutually independent. The range of each Xi is divided into m
(= number of runs) ascending intervals of equal probability and a random
value is drawn on each interval for. each variable. Next, we generate the order
in which the m values of each variable are to be used in each run by creating
a sequence of n random permutations of the integers I to m. Finally, we
form the required vector for the zth run by taking the iZ number from each
of the n random permutations.

Latin hypercube sampling plans generated by the standard approach
are restricted only in the sense that for each variable, a value must be picked
once and only once from each of its m intervals. A point we have not yet
considered is the impact that correlations between the columns cf a LHS sam-
pling plan may have on the generated estimates. For ease of explanation, we
will continue the assumption that the population variables are mutually in-
dependent, although similar results are obtained for any given population
covariance matrix. For the n variables, although their sampling plan permu-
tations are determined independently, a standard LHS plan will, in general,
have some level of correlation between the pairs of permutations. Thus, the
sampling plans will not, in general, parallel the correlations of the true joint
distributions. If LHS sampling is done without concern for the correlation
pattern (or lack thereof), the estimators cannot be guaranteed to be unbiased
or even consistent.

The desire then is to design LHS plans which incorporate the vari-
ables' true pairwise correlations. For two variables, Xi and Xj, with distri-
bution functions having strictly positive standard deviations, 0, and aj, the
correlation coefficient between the variables is defined as

- cov(Xi, X,)

where cov(Xi, Xj) denotes the covariance between variables Xi and Xj.
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To approximate the pairwise correlation coefficients pi,, we will con-
sider the correlation coefficients between the pairs of LHS plan permutations
associated with variables Xi and Xj. (The two forms of correlations are equal
when Xi and Xj are both uniformly distributed.) For permutations of the
integers from 1 through nr, it can be shown that the correlation coefficient

of the indices of any pair of permutations is

m(m 2 - 1)'

where Dv is the difference between the vth integer elements in the vectors.
This is known as the Spearman rank correlation coefficient and can take on
values in the interval [-1, 11. The expected value of the rank correlation
coefficient is 0, and its variance is 1/(m - 1). Throughout the remainder
of this paper, we denote the rank correlation estimate between the column
permutations of variables Xi and X, by tO.

For illustration, suppose we want to run a model with three mutually
independent uniformly distributed variables (for simplicity, x, y, and z),
each to be represented by values chosen from their respective sample spaces.
Assuming further that we are allowed only six runs, consider the LHS plan
given below:

Table 1: Latin Hypercube Sampling Example

Model Run Variable Values

1 X1 Y1 Z5

2 x 2 Y6 Z3
3 X 3  Y5 Z4

4 X4  Y3 Z1

5 X5  Y2 Z2

6 X6  Y4 Z6

The rank correlation coefficients for this example are

r12 = 0.00, r23 = 0.00, r 13 = 0.00,

and hence, it appropriately models the mutual independence of the three
variables. If, for example, the variables were dependent with true joint dis-

tributions having pairwise rank correlations of say, r 12 = -. 6, r 2 3 = -. 42,
and r 13 = .14, then this particular sampling plan would not suitably parallel
these true rank correlations.
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The objective of the restricted LHS problem we consider is the selec-
tion of column permutations which attempt to meet exactly the true rank
correlations associated with the variables. In this way, sampling is intended
to match more closely the true marginal distributions of the input vari-
ables. Specifically, the minimization problem, called minimum-correlation
LHS (MCLHS), provides a sampling specification minimizing the sum of the
absolute values of the pairwise differences (ýit - ri 1). In much of the discus-
sion however we will minimize the sum of the absolute values of the pairwise
rank correlations ij,. This models the situation when independence of the

variables is likely (i.e., ri1 = 0).

2 Integer Programming Models for MCLHS

The minimum-correlation latin hypercube sampling problem described can
be formulated as a n-index assignment problem with side knapsack equation
constraints (APSEC). To begin, define:

1 if vIv 2 ... v, is a sampled cell
where the n-indices on the x-variable,

= v1,v 2 ,... ,v,, can each take a value from 1 to m
0 otherwise

and also d+, d- E R•+ such that:

dt-d-= (÷i - r,3)m(m 2 -1)/6 i=l...n, j>i.

Thus, d+ and d7 are the positive and negative magnitudes of the devia-
tions from the true rank correlation of the rank correlation between column
permuations i and j.

F Kj-"l 6rij ), is
Equivalent to minimizing the sum •'=2 ~i- 1  6 .r j

minimizing the objective function

n--1

mi {= (d++d')}"
min i.~ d-



618

Although the formulations described below are applicable to cases
with nonzero ri,, for ease of presentation, we will assume rij = 0. It can be
shown that

m(m' - )ý/6 = m(m 2 - 1)/6 - D

will be integer-valued for all pairs of permutations. Thus, we can now define
d+, d7 E Z+ such that:

d- d-= rn(m 2  1)÷ij/6 i=1...n, j>i.

In order that the IP formulation fully encompasses the MCLHS, it
must include assignment constraints that draw a one-to-one correspondence
between the positive-valued x, ... Vn of a feasible solution and n-tuples of col-
umn permutations. Thus, the J"' column permutation requires the m assign-
ment constraints

Vi=1 V2=1 V=1

excluding ,

Additional constraints are needed to enforce that
m(mn2 - 1)÷\,/6 = d -d- holds for all i and j, i <.j <n. These constraints
are

ml m m•

E ... E (v,- Vj) 2 X,... V" = m(m2 _ 1)/6 V i < ' -< n
v1--I v2=1 v'=1

In addition to belonging to the class of NP-complete problems, we see
that this formulation requires m' x-variables as well as a total of n(n - 1)
deviational (dt, d-) variables. There are nrm assignment constraints and

(n) constraints to ensure that m(m 2 - 1)÷jj/ 6 = d- - d-. Hence, although
this formulation is the most straightforward, we will present other APSEC
formulations which have more reasonable problem size growth.
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To develop alternative formulations, we use the objective function
lower bound of (r)6/((m(M2 -1)) when m = 2 + 41 for some nonnegative
integer 1, and zero otherwise, and make the assumption that given k - 1
column permutations with minimum E-1 I , it is possible to fix
these columns and find an optimal kth column permutation. Our research
and empirical results have shown that these are valid assumptions.

Suppose we have a solution to the (k - 1)-dimensional problem, and
wish to use this solution to obtain a solution to the k-dimensional problem.
Let (pl, p2, ... ,pk) denote the corresponding column permutation vectors,
and define

1 if the ith element of column k
ii= is assigned value j

0 otherwise

To ensure that column k is a permutation of numbers 1... m , we add the
assignment constraints :

zxii = 1 ... ,m

Xij = 1 i = 1,...,m.

We see that the positive elements of an x-solution define a kth column. We
will henceforth interchangably use the terms "an x-solution" and "the kth
column defined by the positive elements of x".

There are (k - 1) additional constraints of the following form:
(1) d+ - d-=m(m2-_1)/6 - Zy=, f=l (pý -)2z, t l..k - I

where p! is the ith entry of the column permutation vector pt. With these
constraints, we implicitly fix the (k - 1) previously found column permuta-
tions.
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The formulation defined thus far with objective function

k-i

mi- d +d),

is a general formulation for finding a kth column permutation, having fixed
the (k - 1) column permutations that minimize k-2 E,>, I . Empirical
evidence strongly supports that there exists a kth column that meets the
lower bound for I rik 1, i = 1,... , k - 1. Hence, there will exist a solution to
the assignment constraints that generates a kth column satisfying

Irn(rn2 - 1)?k/ 6 I =

2 _1 /6_'I;-'D2  1 if m=2+4l, lEZj+

Im mZ_6 ' { 0 otherwise

for all i = 1,... k - 1. To incorporate this into the formulation, we require
that d+ and d-, I = 1,... k - 1 be binary variables. For
m =k 6 + 41, 1 E Z+, any solution that obtains the lower bound must have
d+ + d- = 0. If however, m = 2+ 41, 1 E Z', we can conclude that
d+ + di =1, t = 1,... k - 1. In either case, the problem can be restated
as a feasibility problem with no objective function. We shall refer to this
feasibility assignment problem with side equations as FASE.

The FASE formulation follows the conjecture that one can itera-
tively solve k-dimensional problems using the previously determined (k - 1)-
dimensional solutions. Thus, rather than solving one large APSEC program
with mn + n(n - 1) variables and nrm + (n) constraints, one could solve a
sequence of smaller two-dimensional FASE problems with at most m 2 + 2k
variables and 2m + k constraints ( 2 < k < n ).

In the presentation, we shall discuss heuristic and Lagrangean-based
solution procedures developed to solve the MCLHS problem and its equiva-
lent formulation FASE.
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Abstract

This paper describes a standard for the use of GAMS 2.25 as an
object-oriented modeling language. The over-riding benefit of using
this technique is the ease with which many individuals can simulta-
neously develop extraordinarily complex modeling systems. Lesser,
but still important benefits include: structured user-interface design,
plug-in/plug-out models, isolating portions of the problem, easy main-
tenance and updates, and model re-use. Simultaneous model devel-
opment stems from the latter benefits, while all of these advantages
derive from the clear, rigorous organization of your model as specified
in the following standard.

We present the concepts of encapsulation (forming objects) and hi-

erarchical modeling in the context of mathematical modeling. Encap-
sulation is a well-known programming technique that is newly applied
to modeling, and our version of hierarchical modeling differs slightly
from past notions. Traditionally, a hierarchical model embodies the
concept of forming larger models from a collection of sub-models. The
following method is based on a partition of the relations (equations) of
the model, where the elements of the partition are partially ordered.

1 Overview

Object-oriented modeling (OOM) is a method of modeling that closely im-
itates object-oriented programming (OOP) [?,?,?]. We have developed a
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standard for using GAMS 2.25 [?] as an OOM language. The difference be-
ing that the 00 models are much more structured and abstract. This makes
them more user friendly because their use is well defined by the structure
and their details are hidden within. 00 Models thus appear simpler and
more uniform to the user. 7

Four essential properties set OOM apart from standard GAMS 2.25:

Routines: Structuring the assignment statements into procedures as in Pas-
cal.

Encapsulation: Combining data and variables with the equations and as-
signment statements that manipulate them to form a new data type-a
model.

Information Inheritance: Defining a model that uses other models in its
formulation, with each sub-model inheriting the information from its
ancestors. The use of models within models defines the use hierarchy
which forms a partial ordering of all used models.

Polymorphism: Giving a model's routine one name that is shared by all
descendants in the use hierarchy, with each descendant implementing
the routine in a way appropriate to itself.

Routines are implemented using the $INCLUDE statment. Encapsulation,
inheritance, and polymorphism are implemented in GAMS 2.25 through self-
discipline. The following is a detailed discussion of the principles and im-
plementation of OOM in GAMS 2.25 through self-discipline. We hope that
the future will bring the language extensions need for a proper implementa-
tion. In which case, the standard described below would be enforced by the
compiler.

There are now a variety of experimental modeling languages offering
object-oriented features, notably ASCEND [?] and MODEL.LA [?]. We of-
fer a form of inheritance that differs from the class inheritance of standard
OOP and OOM languages. This is an extra restriction placed on our models
based on deferred requirements, and the use of models within other models.
Data and variables are legated (passed down) to the descendants, while meth-
ods are used by ancestors to ensure that deferred information' is properly
defined.

'Data and variables that have been declared but. are yet undefined.
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There is a restricted form of communication control between the r',el ,
the use hierarchy. Essentially, desccndant3 can inspect ancebor infor,-atie;.
but ancestors can only ask that certain information be providcd. ln this ,way:
siblings communicate through the parent, and its deferred informatiou.

We further expound on these -concepts and offer a full accounting of the
presentation. First we introduce a model and how it is encapsulated. This
leads to an overview of traditional hierarchical modeling. Then we explain
how OOM fits into this background. The final section gives the standard
itself-how to implement OOM in GAMS 2.25.
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1. Motivations for a formal theory.
The definition of a specific model is often conceived as a work which has to be done
from scratch. In fact, the variety of the variables describing the modelled reality seems to
exclude the possibility that a model can be defined assembling pieces of correlated sub-
models. To define models from scratch greatly decreases the productivity of the work.

It seems that the keyword in increasing modelling productivity is "reusability". Models
can be reused and integrated so to produce new models. Naturally models to be integrated
have to be expressed using a common base and the result has to lie on the same
framework. In this paper the chosen framework is the Structured Modeling, as formally
defined by Geoffrion, [3].

Here we define three integration levels, according to the degree of influence of the
operator in the procedures used to merge the models:

Level I - AUl the procedures are automated. This means that the user selects the
input models and the genera to be integrated, and the output integrated
model is automatically produced.

Level 2 - The user selects the input models and the order of integration among
the genera, and the output integrated model is automatically produced.

Level 3 - The user select the input models, the genera to be integrated and
formulate the steps necessary to integrate. The output integrated model
is not automatically produced, since the steps can vary according to the
situation.

2. Preliminary results.
In the rest of this paper we assume that the reader is familiar with the formal theory of the
Structured Modeling.

Given a Structured Model Mi, let Gi = (gj, j = 1, .... k) be the set of all the genera,
this can be partitioned into three disjoined sets: PC, A and FT such that:

PC = { gj e Gi: gj is a primitive or a compound entity genus )
A = (gj e Gi: gj is an attribute genusI
FT = (gj e Gi: gjisafunctionoratestgenusI.

Lemma 1: Any genus gj e PCi does not have references to any other genera gk 6 (A v
Ft')



V

Proof: Primitive entity elements, by definition, have no calling sequence, therefore they do not have

references to any other element: compound entity elements, by definition, are construct only on primitive

entity elements. n

Lemma 2: Any genus g, e A, has only references to another genera gk e PCi.

Proo* Attribute elements, by definition, characterize only primitive and compound elements. .

Lemma 3: Any genus gi E FTi does not have references to any other genera gk 1E PC,:.
Proof: Function and test elements call. by definition, attribute, function and test elements; therefor-.

they cannot call primitive and compound entity elements.s

Definition 1: Connected Module, Sub-Mode!.
A module is a Connected Module if its genera and their calling sequences define ,:
connected graph. A Sub-model is a connected module with ai least one primitive entrv
genus.

Definition 2: Behaviour Equivalence on FT1 ; FlT'i.
Two structured models M1 and M2 are Behaviour Equivalent ,n FTj a FT; ant
FT2 ýCFT 2 if the following two conditions hold:
a) The set X1 of the attribute genera directly or indirectly called by the an(* FT, at .t:e
set A2 of the attribute genera directly or indirectly called by the gj E FT2 have the saone
structure;

b) FTI and FT2 give as output the same values.

We shortly write "behaviour equivalent" when the sub-set F'i coincides with FTi.

Definition 3: Normal Model.
A model is called normal if an isomorphic relation exists between attribute and
compound genera, and their elements.

The graph of the elements of a normal model is shown in figure 1: dotted rectangles
identify genera.

0CD000 00 0 00CS/

(D CD C:) CD : (:D CD

figure I

Proposition 1. Given a Structured Model Mi, it is always possible to construct a
normal model N(Mi which is behaviour equivalent to Mi.

Proof: Let us consider a generic attribute genus gj r Ai c Mi. It is always possible to define a new

compound entity genus. ck E PCi. with the same calling sequence of gj. Lemmas I and 2 ensure that

genera which are called by an attribute genus can be called by a compound entity genus too, An
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isomorphic relation can be set among the elements of gj and ck: the first element of gj calls the first
element of ck, etc. This process is r'epeaed for every attribute genes of Mi.
If we indicate with N(Mi) the modified model, the set B = 9Ck, gj) c N(Mi) 4* gj e Mi for every genus
gk e Fri c N(Mi).

Definition 4: Index Basis, Index Basis Set.
An Index Basis of a normal model N(Mi) is a couple of genera Bj = (aj, cy), where aj
-F A; c Mi is an attribute genus, and cj is the compound entity genus called by aj. The
genus a. is called value component of Bj, while the genus cj is called index
fotrponEnt. The set BSi = (Bj, j:I ... , k) containing all the index basis of N(Mi) is
:ciled Index Basis Set.

k.finiaion 5: Index Function.
An Index Function i(gj) is a rule which associate to every genus gj e N(Mi) the
..ardinality of its index set.

As example, given a genus gi indexed byj x k x I, its index function i(gi) returns as value 3.

3. Main results.
.n this caragraph we try to give an example for each level of integration previously
defined.

3.1. Level I integration example.

To show the first level of integration we need to introduce the definition of a function
sub-model.

Definition 6: Function Sub-Model.
SubM(f) is called Function Sub-model if the following properties hold:
a) SubM(f) is a normal model.
b) SubM(f) has at least a function genus fE FTi c Mi indexed as singleton.

In the following we give a procedure, which transforms a Structured Model Mi with at
least one function genus indexed as singleton into a function sub-model.

The following procedure, CREATEFUNCTIONSUBMODEL. needs as input a
model Mi and a singleton genus f E FTi c Mi, and produce as output a function
sub-model. The proof of this is given in Proposition 2.

arocedure CREATEFUNCTIONSUBMODEL (input: Mi, f: output: SubM(f)1;
"4odify Mi into a function sub-model SubM(f) 1

/- stop I. -Normalize the model, /

NORM,•L (Mi):

/- steop I. -merge functions, /
Create a LIST of calling sequence segments si of f;

repeat
Examine the segment si e LIST.

if the referred genus gk E FTi
then

/" a '1 Substitute si with the calling sequence of gk
/* b '/ Substitute the value field of gk with its rule;
/" c '/ Delete 9k;

Delete the segment si;

until (end of LIST);
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s stop III -Delete genera nav'ing no intluence on t "/

Create a LIST of gj E Mi;

repeat

Examine g9 E LIST;

if (gj E FTi and Q) 0 t

then delete gj;

if (gj E Ai uPCi and q. is not called directly or indirectly by f)
then delete gj;

until (there are no more a, E FT, C Mi, gj 0 f) and (there are no more gj E

A i V PCi C Mi not called directly cr indirectly by f)

and

Proposition 2: Given a Structured Model Mi and an arbitrary singleton lunction genus
fe FTi c Mi, it exists a transformation T such that:

T(M) = SubM(f)
and SubM(f) and MI are behaviour equivalent on f.

Proof: By applying procedure CREATEFUNCTIONSUBMODEL which defines the procedure TA

Let us show how a function genus f can be reused as an input parameter for other
models. This action is totally automated, here is an example.

Suppose we have two models M1 and M2, we want to substitute the genus gj e AI C
M1 with the computed value given by the genus f e FT2 c M2. This goal is achieved
applying the following procedure (the symbol [MI. SubM2J means the integrated output
model):

procedure REUSE (input: Mi, M,. qý, f; output: IMI, SubM2));

/* Integrate M1 and M2. f is sunstituted to g,
begin

/- Step I -Changes in M-

CREATE_FUNCTIONSUBMODEL (M2,f; SubM2(f));

Create a LIST of genera gi E A, C SubM2(f);

repeat
Add the calling sequence's segments ot gj E A, to the calling sequence of

gi EA-, C SubM2Ifl;

until end of LIST;
/* Step 11 "Changes in M"*

Create a LIST of genera g, E FT C NiM);

repeat
Select gi from LIST;

if gi calls g) E A1

then
Substitute gj with f in the calling sequence of gi:

LIST := LIST - 9i;

until end of LIST
/. Step III 'Delete attribute genus" *

Delete g) E Al.
end.

Proposition 3: Given two Structured Models Mi and M 2 , it is always possible to
substitute an attribute genus gj E A/ C Mi with a singleton function genus f E FT2 I
M2 . The result is a Structured Model.

Proof. By applying the procedure REUSE we obtain as result the model [MI, SubM2A. Its graph of

genera must be finite, closed and acyclic.

a) Finiteness. Step [i1 guaranties that the number of genera of (MI. SubM2A is equal to the number of

genera of (MI u SubM2(f)) - gj.



VIII

b) Closure. By steps I and II, there is at least one genus of MI calling a genus of SubM2() and at least
.on genus of SubM2 (f) calling a genus of MI. From closure of MI e SubM2(f) it follows the closure of

(MI. SubM2O.

c) Acycliity. Let us consider an arbitrary sub-set of genea Gi c [Mi. SubM2J, and let us assume that
it is cyclic. Therefore. Gi contains genera belonging to both models, because no new references are set by

the procedure among genera belonging to only one model. By construction, the sequence must be of the

type:

I .... a ae A2 c SubM2(f), f,... - .

The genus following f in the sequence has to be a function genus, while the genus preceding ai has to be

a compound entity genus. By Lemma 3 there are no references among function genera, and compound

entity genera. Therefore, G, cannot by cyclic. .

Figure 2 shows how two models are integrated.

a, f

.k

0"'
M SubM(O )

Figure 2

Proposition 4. Given two normal models Mi and M2 , the integrated model obtained
substituting an input parameter gj E Al cMI, with an output parameter g2 e FT2 c M2
is a Structured Model if i(gj) = i(g2).

Proof: it follows the same line of proposition 3. The necessary condition given by the equality of the

index functions ensures the closure and acyclicity of the graph of the elements..

Given the result of proposition 4 the following procedure can be constructed. The
input parameters are the two normal models, an index basis of the model MI and a
function genus of the model M2 .

procedure USE (Input: N(Mj(. NUM2. B1 . f; Output: tNIMI). NIM2)fl;

begin

Select al e B1;

Compute il(al);

Compute i',(f);

±f il(al) 0 12 (f) then exitl
Create a LIST of genera gi E FT1 C NMI);
repeat

Select gi from LIST;

it gi has a reference to al then
Substitute the reference to ai with a reference to f:

LIST := LIST - gi;

until end of LIST;

Delete Bl;

end.
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The following steps create an integrated model, which is the same result as in
Geofffion. The final graph of genera obtained applying sequentially step 0 - step IV is
shown in figure 4.

stop 0.
NORMAL (iim;
NORMAL (mkt):
NORMAL (mar);

NORMAL (mfg);

stop 1.(•
SUBSTITUTE (mkt, mar, [PDl]. [P,D21)- /

USE (mar, mt, tV,D31, V);

Stop Ii. -
USE (mfg. mar, [V,D5], V);

USE (mar, mfg. [E,D4], E);

SUBSTITUTE (fin, mar. [P,D61, (PD2]);

USE (fin, mar, [E,D8], E);
USE (fin, mar. [V.D9], V);

stop IV. ~~ ~
MERGE (mfg, mar, P, U); fi mkt mar mfg

Figure 4

33 Level 3 integration example.
At this level of integration the user needs to define the steps to integrate the models, and

there are no automated procedure. Let us present another example extracted from
Geoffrion [4]. The steps are informally defined, since the user will formalize them.

Stop 1 T:u' _D6OUT$ TDem

Delete DEN and T:DEM genera from TRANSI
Delete SUP and T:SUP genera from TRANS2 TDC

stop I1

Merge genus CUST from TRANSI with genus
PLANT from TRANS2; W

0%0. WOO OFb- OCes

stop III
Create new genera T:DC and define its
reference;

step IV (Optional)
Create a new genus TOTS being the sum of

the TOTS function genera of the two

models; TRANSI TRANS2

Stop V (Optional)
Rename genera; Figure 5

4. Conclusions.
The first remark about the definition of a formal theory to models' integration is
modularity. This can be easily achieved projecting the theory of the Structured Modeling
into the same space of the Object Orientation Principles.

The second remark regards the construction of three sub-sets which contain the
procedures characterizing the formal rules of the three integration levels.

Both aspects will be deeper developed in the future.
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3 2. Level 2 integration example.
In this case the role of the user is relevant, since the input parameters to be merged are
only identified by him.

Proposition 5. Given two normal models N(MI) and N(M2 ) and the corresponding
index basis set BSI and BS2, the integrated model obtained substituting in N(MI), Be
BSI with Be BS2 is a Structured Model.

Proof: To substitute Bj with Bk implies that every genus gj r_ FTi has to replace the reference in is
calling sequence to aj e Bj whit ak E Bk. The graph of genera of the integrated model has to be: (a)
finite: (b) closed and (c) acyclic. (a). (b) hold by construction. (c) hold by lemma 2..

Proposition 6. Given two normal models N(MI) and N(M2), and the corresponding
index basis set BSI and BS2, the integrated model obtained substituting, in N(MI), an
index component cj E Bj E BSI with an index component c, e Bk EBS2 is a Structured
Model

Proof. It follows the lines of proposition 5.n

Given the results of the proposition 5 and 6 the following procedures can be
constructed.

procedure SUBSTITUTE (Input: N(Mf), NiMj2. 81, B2:
Output: [N(MI), N(M2)1);

begin

Create a LIST of genera gi E FTI C Ml;
repeat

Select gi from LIST
Substitute A, C BI with A2 E B2 in the calling sequence of gi;
LIST := LIST - gi;

until end of LAST:
Delete B1;

end.

procedure MERGE (Input: N(MI), N(M,), BI, b2;
-•utput: [N•'MI)0 ::tM2I]);

begin
Select c 1 , al C B1, cQ e 82;
Substitute cI with c2 in the calling sequence of al;

end .

In the next we treat the core example extracted from Geoffrion 141. The sub-models to
be integrated are shown in figure 3 (the details are omitted):

fi mN Na NMf

Figure 3
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t. Introduction
As pointed out by many authors, a Model Management System (MMS) provides for

creation, storage, manipulation, and access to models. MMS functions can be divided in
two main groups: Model storage functions and Model manipulation functions. The
former includes Model Building, Model Representation, physical and logical Model
Storage and Model Retrieval; the latter includes Model Instantiation, Interface with
Databases, Model Maintenance, Links between model and Algorithms, and Model
Solving.

Model representation schemes plays a key role in the implementation of effective
MMSs. To fully implement the functions of MMSs, we need to state a rigorous
conceptual frarmework with a single model representation leading to:

I: ,independence of model representation and model solution,
2) representational independence of general model structure and detailed data

.ieeded to describe specific model instances.
A system based on these ideas would show its usefulness for most phases of the

life-cycle associated with model-based work (Geoffrion 1987). For example, consider a
mathematical programming problem. Once a model of this problem has been
constructed, a MMS should allow the user to perform the following steps:

1) select thle solution technique (if any),
2) solve the model,
3) conduce sensitivity analysis.

To automate steps I and 2, the system has to be able:
a) to recognize what kind of model arises (so that it could automatically select

the appropriate solver);
b) to translate data instantiating the model (querying the Database where they

are stored) into the format required by the selected solver.
This paper will focus on the model recognition phase. We will try to give its

theoretical foundations and to define which conditions a model definition language has
to satisfy so that the resulting representation is "recognizable".

Our formalization of the recognition process is based on the concept of "minimal
representation". A representation of a model is minimal if any other equivalent
representation of the same model can be "reduced" to it.
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2. Model Recognition Problem: Preliminary Results.
The aim of this section is to provide for some formal definitions. In the next, we wili

use them to illustrate how recognition process can be carried out.
The recognition process we are trying to formalize iV based on the concept of

minimal representation. A representation of a model is minimal if any other equivalent
representation of the same model can be reduced to it.

In the rest of this paper we will define and expiain minimaiity, equivalence an'
reduction of model representations; first we need to define what we intend for "model'
and "model representation".

Definition 1
We define the system M to be a model of fhe system P it:
- M does not interact neither directly nor i•drecdy with P
- M is used to obtain informafion about P
- M comprses all ft elements of P relevant for the intended purpose of Me model.

Definition 2
Given a formal language L and a model M, we define L(M) to be its formal representation under L,
if It comprises the expression in language L of all the elements of Mi and of the interactions existing
among them.

In the following we will use the terms "model representation" or simply
"representation" to indicate the "formal" representation of a given moodel under some
formal language.

Let us consider, as an example, model Mi as the model of the system P that computes
the mean of a given series of values belonging to P; if L is the standard algebrai-
notation, then L(Mi) will be:

n

i=i

mean - [1]
n

If L(Mi) exists and is unique, then the recognition problem has a trivial solution,
because there is a 1:1 correspondence between model and its representation.
Unfortunately, except for very few cases, the model Mi has many representations
L•(M.), j=l, ..., n, n> l. Referring to the previous example, two other ways to represent
the same model are the following ones:
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n
sum -- Xi .Yk

i;1 k--I
[21 result = [3]Z

sum
mean n

It is intuitive that all previous representations are equivalent, in so far as they "do the
same thing". Nevertheless, for our purposes we need a more rigorous definition of
equivalence based on the concept of "transformaton rule".

We can think to a transformation rule as to a function or procedure whose input is
the whole model representation or a part of it, and whose output is a new model
representation or a part of it. Obviously, the output of a transformation rule must be
semanticaily consistent with its input. Let us give its formal definition:

Definition 3
Consider a tormal language L and two distinct sets E1 and E2 of expressions of L semantically
identical. Let R be the set of all transformation rules defined on L; r e R is defined to be a
transforatton rule on L i applied ID E1 transforms it into E2.

The existence of transformation rules is very important to state formally the
equivalence of model representations. Two equivalent representations must be
semantically identical; in other words, there exist two (sets of) transformation rules that
transform one into the other, and viceversa. We can formalize the equivalence between
model representations as follows:

Definition 4
Let SL = ( LJM): j-=1 ... , n; n>1) be the set of all possible representation ofM 1 in the language L. Two
representations 4Mý, Lk(M) e SL, jfi, are defined to be equivalent if there are two sets of
transformation rules, R, and R2, defined on L suct that R1 applied to I.4M transform it into Lg(Mi).
and R2 applied to Lk(M) transform it into 14M4. If R, - R2 then the two representations are defined
Identical. Obviously, identical representations are also equivalent.

As an example, let us consider two transformation rules, called split and join suitable
to be applied to representations (1] and [21. The terms LHS and RHS stand for
respectively "left hand side" and "right hand side".

transformation split
Input

in-fraction type fraction
output

out-assignment type assignment statement
cutLfraction type fraction

begin
set RH$ of inassignment to numerator of injraction
set numerator of out-fraction to LHS of outassignment
set denominator of ouLfraction to denominator of injraction
end
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tranflormatiod join
Input

inassignment type assignment statement
in-fracton type traction

output
out.fraction type fraction

begin
if LHS of inassignmenh = numerator of in-fraction then

exit join
set numerator of outfraction to RHS of in-assignment
set denominator of outjraction to denomnmator of infraction
end

The rule split performs the following operations: given a fraction, it reads its
numerator and assigns it to an intermediate variable, and then it builds another fraction
whose numerator and denominator are respectively the intermediate variable and the
denominator of the given fraction.

The rule join acts as follows: given an assignment statement and a fraction whose
numerator is the variable on the left hand side of the assignment statement, it builds a
new fraction whose numerator and denominator are respectively the right hand side of
the assignment statement, and the denominator of the of the given fraction.

Since we can transform representation [I] into representation 12] and vice versa by
applying respectively transformation rules split and join, they are equivalent in the
sense expressed in Definition 3. They are not identical, since transformation rules we
need to apply are different.

Let us now consider a third rule, called rename, which renames all the elements of a
model definition, or a part of them, subject to the simple constraint that all elements
with identical name in the input model representation must have identical name in the
output one. Model representation {31 is one of the possible results of applying rule
rename to (1]. Since transformation rule we need to apply to transform representation
[I] into representation 131 and vice versa is the same, they are identical.

3. Model Recognition Problem: Basic Ideas.
As asserted in first section of this paper, our main task is to determine which

conditions have to be satisfied so that the recognition of a model can be performed. For
this purpose, we state that the language L must allow that the set of model
representations it produces can be ordered by rank. The rank is a measure, defined on
some measurable aspect of L, which allows to class and order model representations.
We formalize that as follows:

Defindion 5
A lormal language L satisfies ft ptoperty of rankabiUty if:

- all model representations 4M1) e SL are equivalent;
- all model representalions LýM) e SL can be ranked
- SL can be partlioned by rank and all the elements in the same cell of the partition are
identical.

In previous examples we might consider the number of equations as rank. If so, then
representation [I] and [3] are of rank I while representation [2] is of rank 2. Since all
representations are equivalent, and representations [ I] and [31 are identical, then the
property of rankability holds.

Now, let us explain how recognition process can be carried on. To recognize a model
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representation means that we have to determine the model it represents. The basic idea
of this process is to transform the representation to recognize into another one that we
know the kind of model it represents. So doing, we have "recognized" the model.

If the representation we- deal with are expressed in a language L satisfying
rankability, then all representations of the same model are equivalent. So, if we know
all transformation rules that language L allows, then we can recognize any
representation simply transforming it into the known one by applying to it the
appropriate transformation rules.

The set of all transformation rules may be incredibly large or even not finite. This
fact can influence the efficiency of the recognition process. The recognition process can
be carried out more efficiently if it is based on the ideas of "minimal representation"
and of "reduction rule" defined as follow:

Definition 6
A model representation L(M1 is defined to be WnOWmal if:

- L satisfies Vle property of rankabdity;
Sit has the lowest possible rank.

Definition 7
Given a language L satisfying rankability, reducton rules are defined to be transformation rules
which when applied to a model representation I(MJ e SL of rank k produce a model representation
LAM) E SLot rankj < k.

Referring to previous example, we can consider representations (11 and [21 as
minimal ones.

Property of rankability plays a crucial role for our purposes; in fact, if L satisfies
rankability, all reduction rules are known, and they form a finite set then:

- it always admit a minimal representation (i.e. a representation which has the
lowest possible rank, and to which any other representation of the same model
can be reduced);

- any model representation in language L can be reduced in its minimal form
(by applying to it the appropriate reduction rule until no more rule can be
applied);

- all minimal representations of the same model are identical.

Under the above mentioned condition, the recognition process of a given model
representation can be based on the minimal representation by performing the following
basic steps:

1) reduce the model representation to recognize to its minimal form;
2) search among the "known" minimal model representation for a template

matching the minimal representation obtained by step 1.

Since for any given language L, the set of the reduction rules must necessarily be a
subset of the set of the transformation rules, the recognition process of a given model
based on the minimal representation is more efficient than the previous one.

Now, we can define formally the condition under which a given model definition
language generates "recognizable" model representations:
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Definition 8
A model representation is defined to be recognizable if the recognition process:
- can be based on its minimal representation
- can be peformed in a finite number of steps.

Claim I
A formal model definition language L generates -recognizable. model representations it:
- it satisfies ft property of rankability,
- the set of all reduction rules it admits is finite.

Proof:
If L satisfies property of rankability then it always admit a minimal representation. If the set of the
reduction rules is finite any model representation can be reduced to its minimal form in a finite
number of steps. In this way both the conditions which state the recognizability of a model
representation are satisfied.

3. Conclusions
Here we have sketched the fundamental lines to "recognize" models representation.

It seems to us that the idea of minimality looks very promising to be further
investigated.
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Extended Abstract

This paper describes a simple methodology for reasoning about temporal

and precedence constraint satisfiability problems arising in job scheduling. In

particular, a Constraint Satisfaction Problem (CSP) approach is presented.

Several researchers, coming both from Artificial Intelligence (Al) and

Operations Research (OR) have investigated methods for dealing efficiently

with time (see, e.g., [2, 3, 7, 12]); however, at least to the author's knowledge,

only very few real and large scale scheduling applications have been

approached using this relatively new technique [4].

In this paper, among all the job scheduling problems, an application in

which a set V of n jobs has to be processed on a single machine is considered,

such that a release date ri, a deadline di and a process time pi are associated

with each job i e V. The problem is formulated on a constraint network, i.e.,

a digraph G = (V,A) of n nodes (jobs). An arc (ij) E A means that job j can

be processed immediately after job i. A weight pj and the attributes rj and dj

for each node j E V are given. Moreover, a digraph P = (VE), with E C A,

is given such that an arc (ij) E E represents a precedence constraint between
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jobs i and j. The problem consists of determining the starting time for

processing the jobs in V such that the time windows (defined by rj and dj) for

scheduling the execution of each node (job) is satisfied and the precedence

constraints between nodes given-by the relationships defined in arc set E are

satisfied within a time horizon (production plan).

Based on the Allen's model for temporal logic [1], a CSP formulation is

first presented. A CSP consists of a set of variables X = {Xi, x2, ..., xn }, their

associated domains Di, D2, ..., Dn and a set C of constraints on these variables.

A solution to a CSP consists of an instantiation of all the variables which does

not violate any of the constraints. In the case of the application considered in

this paper, let X be the set of variables such that xi represents the starting time

for processing job i, V i E V. A domain Di is associated with each variable xi

such that Di = { set of available Time Machine Units (TMUs) for processing

job i (production plan) }. The set C of constraints is defined by two classes of

constraints, namely C1 and C2, such that C = C1 U C2, C1 = { unary constraints

(time interval) } = { ri E V } U { di V i E V } and C2 = {binary constraints

(precedences) } = { (ij) E E }. The problem is to verify whether an

instantiation of all the variables is possible such that all the jobs are completed

within their time interval and no precedence relationship is violated.

Starting from the Allen's interval algebra, the temporal relations are

specified by atomic relations. In particular, for each pair ij of jobs the following

atomic relations are defined:

- After(j,i): this specifies the precedence relationship between i and j, i.e.,

(ij) E;

- Available(iri,,D): this specifies the release date of job i within the

production plan;
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Due(4di,Di): this specifies the deadline of job i within the production

plan.

The constraint network G of this problem is then "preprocessed" such that

to compute the tightest possible bound for both unary and binary constraints

on the jobs. In particular, given the explicit precedence relationships between

jobs the possibility of inferring additional implicit precedence relationships are

explored; for instance, the transitivity of the predicate After(j,i) may allow to

infer information such that

- Afterok) nAfter(ki) - After(j,i).

Moreover, the availability interval of each job within the production plan

is computed by considering its release date, deadline and precedence

relationships. The new domain Di' for each job i in V is hence computed such

that the predicate

- Di' = Interval(i,ridi) = Di n Available(4riDi) f Due(4di,Di)

returns the restricted time interval in which each job has to be processed

in order to obtain a feasible scheduling of the jobs. Note that all the possible

instantiations of the corresponding variables are thus noticeably reduced after

the computation of Di', V i E V.
I

It is worth mentioning that such a preprocessing approach allows for

further generalization of the proposed scheduling problem; for instance, it

could be necessary to take into account a possible decomposition of the jobs

into different subtasks [13], to analyze periodic scheduling problems [9] or to

consider setup times between jobs [5].
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A Prolog-like algorithm is then presented for finding a consistent

assignment for the variables, i.e., an instantiation of all the variables which does

not violate any of the constraints given by both C1 and C2. In particular, the

procedure

- Xi = Assign(iDi)

associates a value in the new domain Di' with the corresponding variable

xi, such that a feasible starting time for processing job i is given.

In this phase, following the most-constrained approach suggested in ( 12.,

the job having the tightest constraints is selected first. In particular, the

procedure

- Preorder(X)

performs a sort of the set of variables in such a way that the most critical

job, i.e., the most constrained job, is chosen first for its instantiation.

In this particular application the most constrained path is proven to be the

most efficient implementative approach, in the sense that the number of

backtrackings is minimized (see, e.g., [6, 71 for an overview of the complexity

of this kind of temporal CSP problem).

Note that a different way for finding a feasible instantiation of all the

variables is to look for an initial solution, possibly inconsistent, and then

incrementally repair constraint violations until a consistent assignment is

achieved. Such an approach is proposed in [10] in the case of scheduling

problems without precedence and time window constraints.
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The application field and computational experiences related to real-life

cases are also given in the full paper. Some conclusions along with a

comparison with a more traditional mathematical programming approach (see,

e.g. [5, 81) for solving the scheduling problem under consideration are finally

derived.
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